Cargando…
An open-source solution for advanced imaging flow cytometry data analysis using machine learning
Imaging flow cytometry (IFC) enables the high throughput collection of morphological and spatial information from hundreds of thousands of single cells. This high content, information rich image data can in theory resolve important biological differences among complex, often heterogeneous biological...
Autores principales: | Hennig, Holger, Rees, Paul, Blasi, Thomas, Kamentsky, Lee, Hung, Jane, Dao, David, Carpenter, Anne E., Filby, Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5231320/ https://www.ncbi.nlm.nih.gov/pubmed/27594698 http://dx.doi.org/10.1016/j.ymeth.2016.08.018 |
Ejemplares similares
-
Label-free cell cycle analysis for high-throughput imaging flow cytometry
por: Blasi, Thomas, et al.
Publicado: (2016) -
Label‐Free Identification of White Blood Cells Using Machine Learning
por: Nassar, Mariam, et al.
Publicado: (2019) -
Advances in Intraoperative Flow Cytometry
por: D’Amato Figueiredo, Marcos V., et al.
Publicado: (2022) -
Inter-laboratory automation of the in vitro micronucleus assay using imaging flow cytometry and deep learning
por: Wills, John W., et al.
Publicado: (2021) -
Data Driven Cell Cycle Model to Quantify the Efficacy of Cancer Therapeutics Targeting Specific Cell-Cycle Phases From Flow Cytometry Results
por: James, David W., et al.
Publicado: (2021)