Cargando…
Comparison of Criteria for Choosing the Number of Classes in Bayesian Finite Mixture Models
Identifying the number of classes in Bayesian finite mixture models is a challenging problem. Several criteria have been proposed, such as adaptations of the deviance information criterion, marginal likelihoods, Bayes factors, and reversible jump MCMC techniques. It was recently shown that in overfi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5231325/ https://www.ncbi.nlm.nih.gov/pubmed/28081166 http://dx.doi.org/10.1371/journal.pone.0168838 |
_version_ | 1782494465068367872 |
---|---|
author | Nasserinejad, Kazem van Rosmalen, Joost de Kort, Wim Lesaffre, Emmanuel |
author_facet | Nasserinejad, Kazem van Rosmalen, Joost de Kort, Wim Lesaffre, Emmanuel |
author_sort | Nasserinejad, Kazem |
collection | PubMed |
description | Identifying the number of classes in Bayesian finite mixture models is a challenging problem. Several criteria have been proposed, such as adaptations of the deviance information criterion, marginal likelihoods, Bayes factors, and reversible jump MCMC techniques. It was recently shown that in overfitted mixture models, the overfitted latent classes will asymptotically become empty under specific conditions for the prior of the class proportions. This result may be used to construct a criterion for finding the true number of latent classes, based on the removal of latent classes that have negligible proportions. Unlike some alternative criteria, this criterion can easily be implemented in complex statistical models such as latent class mixed-effects models and multivariate mixture models using standard Bayesian software. We performed an extensive simulation study to develop practical guidelines to determine the appropriate number of latent classes based on the posterior distribution of the class proportions, and to compare this criterion with alternative criteria. The performance of the proposed criterion is illustrated using a data set of repeatedly measured hemoglobin values of blood donors. |
format | Online Article Text |
id | pubmed-5231325 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-52313252017-01-31 Comparison of Criteria for Choosing the Number of Classes in Bayesian Finite Mixture Models Nasserinejad, Kazem van Rosmalen, Joost de Kort, Wim Lesaffre, Emmanuel PLoS One Research Article Identifying the number of classes in Bayesian finite mixture models is a challenging problem. Several criteria have been proposed, such as adaptations of the deviance information criterion, marginal likelihoods, Bayes factors, and reversible jump MCMC techniques. It was recently shown that in overfitted mixture models, the overfitted latent classes will asymptotically become empty under specific conditions for the prior of the class proportions. This result may be used to construct a criterion for finding the true number of latent classes, based on the removal of latent classes that have negligible proportions. Unlike some alternative criteria, this criterion can easily be implemented in complex statistical models such as latent class mixed-effects models and multivariate mixture models using standard Bayesian software. We performed an extensive simulation study to develop practical guidelines to determine the appropriate number of latent classes based on the posterior distribution of the class proportions, and to compare this criterion with alternative criteria. The performance of the proposed criterion is illustrated using a data set of repeatedly measured hemoglobin values of blood donors. Public Library of Science 2017-01-12 /pmc/articles/PMC5231325/ /pubmed/28081166 http://dx.doi.org/10.1371/journal.pone.0168838 Text en © 2017 Nasserinejad et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Nasserinejad, Kazem van Rosmalen, Joost de Kort, Wim Lesaffre, Emmanuel Comparison of Criteria for Choosing the Number of Classes in Bayesian Finite Mixture Models |
title | Comparison of Criteria for Choosing the Number of Classes in Bayesian Finite Mixture Models |
title_full | Comparison of Criteria for Choosing the Number of Classes in Bayesian Finite Mixture Models |
title_fullStr | Comparison of Criteria for Choosing the Number of Classes in Bayesian Finite Mixture Models |
title_full_unstemmed | Comparison of Criteria for Choosing the Number of Classes in Bayesian Finite Mixture Models |
title_short | Comparison of Criteria for Choosing the Number of Classes in Bayesian Finite Mixture Models |
title_sort | comparison of criteria for choosing the number of classes in bayesian finite mixture models |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5231325/ https://www.ncbi.nlm.nih.gov/pubmed/28081166 http://dx.doi.org/10.1371/journal.pone.0168838 |
work_keys_str_mv | AT nasserinejadkazem comparisonofcriteriaforchoosingthenumberofclassesinbayesianfinitemixturemodels AT vanrosmalenjoost comparisonofcriteriaforchoosingthenumberofclassesinbayesianfinitemixturemodels AT dekortwim comparisonofcriteriaforchoosingthenumberofclassesinbayesianfinitemixturemodels AT lesaffreemmanuel comparisonofcriteriaforchoosingthenumberofclassesinbayesianfinitemixturemodels |