Cargando…
Par3 integrates Tiam1 and phosphatidylinositol 3-kinase signaling to change apical membrane identity
Pathogens can alter epithelial polarity by recruiting polarity proteins to the apical membrane, but how a change in protein localization is linked to polarity disruption is not clear. In this study, we used chemically induced dimerization to rapidly relocalize proteins from the cytosol to the apical...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5231894/ https://www.ncbi.nlm.nih.gov/pubmed/27881661 http://dx.doi.org/10.1091/mbc.E16-07-0541 |
_version_ | 1782494575515926528 |
---|---|
author | Ruch, Travis R. Bryant, David M. Mostov, Keith E. Engel, Joanne N. |
author_facet | Ruch, Travis R. Bryant, David M. Mostov, Keith E. Engel, Joanne N. |
author_sort | Ruch, Travis R. |
collection | PubMed |
description | Pathogens can alter epithelial polarity by recruiting polarity proteins to the apical membrane, but how a change in protein localization is linked to polarity disruption is not clear. In this study, we used chemically induced dimerization to rapidly relocalize proteins from the cytosol to the apical surface. We demonstrate that forced apical localization of Par3, which is normally restricted to tight junctions, is sufficient to alter apical membrane identity through its interactions with phosphatidylinositol 3-kinase (PI3K) and the Rac1 guanine nucleotide exchange factor Tiam1. We further show that PI3K activity is required upstream of Rac1, and that simultaneously targeting PI3K and Tiam1 to the apical membrane has a synergistic effect on membrane remodeling. Thus, Par3 coordinates the action of PI3K and Tiam1 to define membrane identity, revealing a signaling mechanism that can be exploited by human mucosal pathogens. |
format | Online Article Text |
id | pubmed-5231894 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The American Society for Cell Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-52318942017-03-30 Par3 integrates Tiam1 and phosphatidylinositol 3-kinase signaling to change apical membrane identity Ruch, Travis R. Bryant, David M. Mostov, Keith E. Engel, Joanne N. Mol Biol Cell Brief Reports Pathogens can alter epithelial polarity by recruiting polarity proteins to the apical membrane, but how a change in protein localization is linked to polarity disruption is not clear. In this study, we used chemically induced dimerization to rapidly relocalize proteins from the cytosol to the apical surface. We demonstrate that forced apical localization of Par3, which is normally restricted to tight junctions, is sufficient to alter apical membrane identity through its interactions with phosphatidylinositol 3-kinase (PI3K) and the Rac1 guanine nucleotide exchange factor Tiam1. We further show that PI3K activity is required upstream of Rac1, and that simultaneously targeting PI3K and Tiam1 to the apical membrane has a synergistic effect on membrane remodeling. Thus, Par3 coordinates the action of PI3K and Tiam1 to define membrane identity, revealing a signaling mechanism that can be exploited by human mucosal pathogens. The American Society for Cell Biology 2017-01-15 /pmc/articles/PMC5231894/ /pubmed/27881661 http://dx.doi.org/10.1091/mbc.E16-07-0541 Text en © 2017 Ruch et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology. |
spellingShingle | Brief Reports Ruch, Travis R. Bryant, David M. Mostov, Keith E. Engel, Joanne N. Par3 integrates Tiam1 and phosphatidylinositol 3-kinase signaling to change apical membrane identity |
title | Par3 integrates Tiam1 and phosphatidylinositol 3-kinase signaling to change apical membrane identity |
title_full | Par3 integrates Tiam1 and phosphatidylinositol 3-kinase signaling to change apical membrane identity |
title_fullStr | Par3 integrates Tiam1 and phosphatidylinositol 3-kinase signaling to change apical membrane identity |
title_full_unstemmed | Par3 integrates Tiam1 and phosphatidylinositol 3-kinase signaling to change apical membrane identity |
title_short | Par3 integrates Tiam1 and phosphatidylinositol 3-kinase signaling to change apical membrane identity |
title_sort | par3 integrates tiam1 and phosphatidylinositol 3-kinase signaling to change apical membrane identity |
topic | Brief Reports |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5231894/ https://www.ncbi.nlm.nih.gov/pubmed/27881661 http://dx.doi.org/10.1091/mbc.E16-07-0541 |
work_keys_str_mv | AT ruchtravisr par3integratestiam1andphosphatidylinositol3kinasesignalingtochangeapicalmembraneidentity AT bryantdavidm par3integratestiam1andphosphatidylinositol3kinasesignalingtochangeapicalmembraneidentity AT mostovkeithe par3integratestiam1andphosphatidylinositol3kinasesignalingtochangeapicalmembraneidentity AT engeljoannen par3integratestiam1andphosphatidylinositol3kinasesignalingtochangeapicalmembraneidentity |