Cargando…

Propagation of measurement accuracy to biomass soft-sensor estimation and control quality

In biopharmaceutical process development and manufacturing, the online measurement of biomass and derived specific turnover rates is a central task to physiologically monitor and control the process. However, hard-type sensors such as dielectric spectroscopy, broth fluorescence, or permittivity meas...

Descripción completa

Detalles Bibliográficos
Autores principales: Steinwandter, Valentin, Zahel, Thomas, Sagmeister, Patrick, Herwig, Christoph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5233751/
https://www.ncbi.nlm.nih.gov/pubmed/27376358
http://dx.doi.org/10.1007/s00216-016-9711-9
_version_ 1782494886158663680
author Steinwandter, Valentin
Zahel, Thomas
Sagmeister, Patrick
Herwig, Christoph
author_facet Steinwandter, Valentin
Zahel, Thomas
Sagmeister, Patrick
Herwig, Christoph
author_sort Steinwandter, Valentin
collection PubMed
description In biopharmaceutical process development and manufacturing, the online measurement of biomass and derived specific turnover rates is a central task to physiologically monitor and control the process. However, hard-type sensors such as dielectric spectroscopy, broth fluorescence, or permittivity measurement harbor various disadvantages. Therefore, soft-sensors, which use measurements of the off-gas stream and substrate feed to reconcile turnover rates and provide an online estimate of the biomass formation, are smart alternatives. For the reconciliation procedure, mass and energy balances are used together with accuracy estimations of measured conversion rates, which were so far arbitrarily chosen and static over the entire process. In this contribution, we present a novel strategy within the soft-sensor framework (named adaptive soft-sensor) to propagate uncertainties from measurements to conversion rates and demonstrate the benefits: For industrially relevant conditions, hereby the error of the resulting estimated biomass formation rate and specific substrate consumption rate could be decreased by 43 and 64 %, respectively, compared to traditional soft-sensor approaches. Moreover, we present a generic workflow to determine the required raw signal accuracy to obtain predefined accuracies of soft-sensor estimations. Thereby, appropriate measurement devices and maintenance intervals can be selected. Furthermore, using this workflow, we demonstrate that the estimation accuracy of the soft-sensor can be additionally and substantially increased. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00216-016-9711-9) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5233751
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-52337512017-01-25 Propagation of measurement accuracy to biomass soft-sensor estimation and control quality Steinwandter, Valentin Zahel, Thomas Sagmeister, Patrick Herwig, Christoph Anal Bioanal Chem Research Paper In biopharmaceutical process development and manufacturing, the online measurement of biomass and derived specific turnover rates is a central task to physiologically monitor and control the process. However, hard-type sensors such as dielectric spectroscopy, broth fluorescence, or permittivity measurement harbor various disadvantages. Therefore, soft-sensors, which use measurements of the off-gas stream and substrate feed to reconcile turnover rates and provide an online estimate of the biomass formation, are smart alternatives. For the reconciliation procedure, mass and energy balances are used together with accuracy estimations of measured conversion rates, which were so far arbitrarily chosen and static over the entire process. In this contribution, we present a novel strategy within the soft-sensor framework (named adaptive soft-sensor) to propagate uncertainties from measurements to conversion rates and demonstrate the benefits: For industrially relevant conditions, hereby the error of the resulting estimated biomass formation rate and specific substrate consumption rate could be decreased by 43 and 64 %, respectively, compared to traditional soft-sensor approaches. Moreover, we present a generic workflow to determine the required raw signal accuracy to obtain predefined accuracies of soft-sensor estimations. Thereby, appropriate measurement devices and maintenance intervals can be selected. Furthermore, using this workflow, we demonstrate that the estimation accuracy of the soft-sensor can be additionally and substantially increased. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00216-016-9711-9) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2016-07-04 2017 /pmc/articles/PMC5233751/ /pubmed/27376358 http://dx.doi.org/10.1007/s00216-016-9711-9 Text en © The Author(s) 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research Paper
Steinwandter, Valentin
Zahel, Thomas
Sagmeister, Patrick
Herwig, Christoph
Propagation of measurement accuracy to biomass soft-sensor estimation and control quality
title Propagation of measurement accuracy to biomass soft-sensor estimation and control quality
title_full Propagation of measurement accuracy to biomass soft-sensor estimation and control quality
title_fullStr Propagation of measurement accuracy to biomass soft-sensor estimation and control quality
title_full_unstemmed Propagation of measurement accuracy to biomass soft-sensor estimation and control quality
title_short Propagation of measurement accuracy to biomass soft-sensor estimation and control quality
title_sort propagation of measurement accuracy to biomass soft-sensor estimation and control quality
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5233751/
https://www.ncbi.nlm.nih.gov/pubmed/27376358
http://dx.doi.org/10.1007/s00216-016-9711-9
work_keys_str_mv AT steinwandtervalentin propagationofmeasurementaccuracytobiomasssoftsensorestimationandcontrolquality
AT zahelthomas propagationofmeasurementaccuracytobiomasssoftsensorestimationandcontrolquality
AT sagmeisterpatrick propagationofmeasurementaccuracytobiomasssoftsensorestimationandcontrolquality
AT herwigchristoph propagationofmeasurementaccuracytobiomasssoftsensorestimationandcontrolquality