Cargando…
Gaussian diffusion sinogram inpainting for X-ray CT metal artifact reduction
BACKGROUND: Metal objects implanted in the bodies of patients usually generate severe streaking artifacts in reconstructed images of X-ray computed tomography, which degrade the image quality and affect the diagnosis of disease. Therefore, it is essential to reduce these artifacts to meet the clinic...
Autores principales: | Peng, Chengtao, Qiu, Bensheng, Li, Ming, Guan, Yihui, Zhang, Cheng, Wu, Zhongyi, Zheng, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5234134/ https://www.ncbi.nlm.nih.gov/pubmed/28086973 http://dx.doi.org/10.1186/s12938-016-0292-9 |
Ejemplares similares
-
Sinogram Inpainting with Generative Adversarial Networks and Shape Priors
por: Valat, Emilien, et al.
Publicado: (2023) -
Completion of Metal-Damaged Traces Based on Deep Learning in Sinogram Domain for Metal Artifacts Reduction in CT Images
por: Zhu, Linlin, et al.
Publicado: (2021) -
MR Image Based Approach for Metal Artifact Reduction in X-Ray CT
por: Anderla, Andras, et al.
Publicado: (2013) -
Metal Artifact Reduction in Dental CBCT Images Using Direct Sinogram Correction Combined with Metal Path-Length Weighting
por: Hegazy, Mohamed A. A., et al.
Publicado: (2023) -
Promising Generative Adversarial Network Based Sinogram Inpainting Method for Ultra-Limited-Angle Computed Tomography Imaging
por: Li, Ziheng, et al.
Publicado: (2019)