Cargando…
Long-Distance Travellers: Phylogeography of a Generalist Parasite, Pholeter gastrophilus, from Cetaceans
We studied the phylogeography and historical demography of the most generalist digenean from cetaceans, Pholeter gastrophilus, exploring the effects of isolation by distance, ecological barriers and hosts’ dispersal ability on the population structure of this parasite. The ITS2 rDNA, and the mitocho...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5234839/ https://www.ncbi.nlm.nih.gov/pubmed/28085945 http://dx.doi.org/10.1371/journal.pone.0170184 |
_version_ | 1782495061458550784 |
---|---|
author | Fraija-Fernández, Natalia Fernández, Mercedes Lehnert, Kristina Raga, Juan Antonio Siebert, Ursula Aznar, Francisco Javier |
author_facet | Fraija-Fernández, Natalia Fernández, Mercedes Lehnert, Kristina Raga, Juan Antonio Siebert, Ursula Aznar, Francisco Javier |
author_sort | Fraija-Fernández, Natalia |
collection | PubMed |
description | We studied the phylogeography and historical demography of the most generalist digenean from cetaceans, Pholeter gastrophilus, exploring the effects of isolation by distance, ecological barriers and hosts’ dispersal ability on the population structure of this parasite. The ITS2 rDNA, and the mitochondrial COI and ND1 from 68 individual parasites were analysed. Worms were collected from seven oceanic and coastal cetacean species from the south western Atlantic (SWA), central eastern Atlantic, north eastern Atlantic (NEA), and Mediterranean Sea. Pholeter gastrophilus was considered a single lineage because reciprocal monophyly was not detected in the ML cladogram of all individuals, and sequence variability was <1% for mtDNA and 0% for ITS2. These results rule out a recent suggestion that P. gastrophilus would actually be a cryptic-species complex. The genetic cohesion of P. gastrophilus could rely on the extensive exploitation of wide-ranging and highly mobile cetaceans, with a putative secondary role, if any, of intermediate hosts. Unique haplotypes were detected in SWA and NEA, and an AMOVA revealed significant population structure associated to the genetic variation in these regions. The Equator possibly acts as a significant geographical barrier for cetacean movements, possibly limiting gene flow between northern and southern populations of P. gastrophilus. A partial Mantel tests revealed that the significant isolation of NEA populations resulted from geographic clustering. Apparently, the limited mobility of cetaceans used by P. gastrophilus as definitive hosts in this region, coupled with oceanographic barriers and a patchy distribution of potential intermediate hosts could contribute to significant ecological isolation of P. gastrophilus in NEA. Rather unexpectedly, no genetic differentiation was found in the Mediterranean samples of this parasite. Historical demographic analyses suggested a recent population expansion of P. gastrophilus in the Atlantic Ocean, perhaps linked to initial association and subsequent spreading in cetaceans. |
format | Online Article Text |
id | pubmed-5234839 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-52348392017-02-06 Long-Distance Travellers: Phylogeography of a Generalist Parasite, Pholeter gastrophilus, from Cetaceans Fraija-Fernández, Natalia Fernández, Mercedes Lehnert, Kristina Raga, Juan Antonio Siebert, Ursula Aznar, Francisco Javier PLoS One Research Article We studied the phylogeography and historical demography of the most generalist digenean from cetaceans, Pholeter gastrophilus, exploring the effects of isolation by distance, ecological barriers and hosts’ dispersal ability on the population structure of this parasite. The ITS2 rDNA, and the mitochondrial COI and ND1 from 68 individual parasites were analysed. Worms were collected from seven oceanic and coastal cetacean species from the south western Atlantic (SWA), central eastern Atlantic, north eastern Atlantic (NEA), and Mediterranean Sea. Pholeter gastrophilus was considered a single lineage because reciprocal monophyly was not detected in the ML cladogram of all individuals, and sequence variability was <1% for mtDNA and 0% for ITS2. These results rule out a recent suggestion that P. gastrophilus would actually be a cryptic-species complex. The genetic cohesion of P. gastrophilus could rely on the extensive exploitation of wide-ranging and highly mobile cetaceans, with a putative secondary role, if any, of intermediate hosts. Unique haplotypes were detected in SWA and NEA, and an AMOVA revealed significant population structure associated to the genetic variation in these regions. The Equator possibly acts as a significant geographical barrier for cetacean movements, possibly limiting gene flow between northern and southern populations of P. gastrophilus. A partial Mantel tests revealed that the significant isolation of NEA populations resulted from geographic clustering. Apparently, the limited mobility of cetaceans used by P. gastrophilus as definitive hosts in this region, coupled with oceanographic barriers and a patchy distribution of potential intermediate hosts could contribute to significant ecological isolation of P. gastrophilus in NEA. Rather unexpectedly, no genetic differentiation was found in the Mediterranean samples of this parasite. Historical demographic analyses suggested a recent population expansion of P. gastrophilus in the Atlantic Ocean, perhaps linked to initial association and subsequent spreading in cetaceans. Public Library of Science 2017-01-13 /pmc/articles/PMC5234839/ /pubmed/28085945 http://dx.doi.org/10.1371/journal.pone.0170184 Text en © 2017 Fraija-Fernández et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Fraija-Fernández, Natalia Fernández, Mercedes Lehnert, Kristina Raga, Juan Antonio Siebert, Ursula Aznar, Francisco Javier Long-Distance Travellers: Phylogeography of a Generalist Parasite, Pholeter gastrophilus, from Cetaceans |
title | Long-Distance Travellers: Phylogeography of a Generalist Parasite, Pholeter gastrophilus, from Cetaceans |
title_full | Long-Distance Travellers: Phylogeography of a Generalist Parasite, Pholeter gastrophilus, from Cetaceans |
title_fullStr | Long-Distance Travellers: Phylogeography of a Generalist Parasite, Pholeter gastrophilus, from Cetaceans |
title_full_unstemmed | Long-Distance Travellers: Phylogeography of a Generalist Parasite, Pholeter gastrophilus, from Cetaceans |
title_short | Long-Distance Travellers: Phylogeography of a Generalist Parasite, Pholeter gastrophilus, from Cetaceans |
title_sort | long-distance travellers: phylogeography of a generalist parasite, pholeter gastrophilus, from cetaceans |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5234839/ https://www.ncbi.nlm.nih.gov/pubmed/28085945 http://dx.doi.org/10.1371/journal.pone.0170184 |
work_keys_str_mv | AT fraijafernandeznatalia longdistancetravellersphylogeographyofageneralistparasitepholetergastrophilusfromcetaceans AT fernandezmercedes longdistancetravellersphylogeographyofageneralistparasitepholetergastrophilusfromcetaceans AT lehnertkristina longdistancetravellersphylogeographyofageneralistparasitepholetergastrophilusfromcetaceans AT ragajuanantonio longdistancetravellersphylogeographyofageneralistparasitepholetergastrophilusfromcetaceans AT siebertursula longdistancetravellersphylogeographyofageneralistparasitepholetergastrophilusfromcetaceans AT aznarfranciscojavier longdistancetravellersphylogeographyofageneralistparasitepholetergastrophilusfromcetaceans |