Cargando…

A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map

We describe a general Godunov-type splitting for numerical simulations of the Fisher–Kolmogorov–Petrovski–Piskunov growth and diffusion equation on a world map with Neumann boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal application for this solver is modeling...

Descripción completa

Detalles Bibliográficos
Autores principales: Petersen, W. P., Callegari, S., Lake, G. R., Tkachenko, N., Weissmann, J. D., Zollikofer, Ch. P. E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5235379/
https://www.ncbi.nlm.nih.gov/pubmed/28085882
http://dx.doi.org/10.1371/journal.pone.0167514
Descripción
Sumario:We describe a general Godunov-type splitting for numerical simulations of the Fisher–Kolmogorov–Petrovski–Piskunov growth and diffusion equation on a world map with Neumann boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal application for this solver is modeling human population dispersal over geographical maps with changing paleovegetation and paleoclimate in the late Pleistocene. As a proxy for carrying capacity we use Net Primary Productivity (NPP) to predict times for human arrival in the Americas.