Cargando…
A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map
We describe a general Godunov-type splitting for numerical simulations of the Fisher–Kolmogorov–Petrovski–Piskunov growth and diffusion equation on a world map with Neumann boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal application for this solver is modeling...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5235379/ https://www.ncbi.nlm.nih.gov/pubmed/28085882 http://dx.doi.org/10.1371/journal.pone.0167514 |
_version_ | 1782495145760915456 |
---|---|
author | Petersen, W. P. Callegari, S. Lake, G. R. Tkachenko, N. Weissmann, J. D. Zollikofer, Ch. P. E. |
author_facet | Petersen, W. P. Callegari, S. Lake, G. R. Tkachenko, N. Weissmann, J. D. Zollikofer, Ch. P. E. |
author_sort | Petersen, W. P. |
collection | PubMed |
description | We describe a general Godunov-type splitting for numerical simulations of the Fisher–Kolmogorov–Petrovski–Piskunov growth and diffusion equation on a world map with Neumann boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal application for this solver is modeling human population dispersal over geographical maps with changing paleovegetation and paleoclimate in the late Pleistocene. As a proxy for carrying capacity we use Net Primary Productivity (NPP) to predict times for human arrival in the Americas. |
format | Online Article Text |
id | pubmed-5235379 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-52353792017-02-06 A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map Petersen, W. P. Callegari, S. Lake, G. R. Tkachenko, N. Weissmann, J. D. Zollikofer, Ch. P. E. PLoS One Research Article We describe a general Godunov-type splitting for numerical simulations of the Fisher–Kolmogorov–Petrovski–Piskunov growth and diffusion equation on a world map with Neumann boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal application for this solver is modeling human population dispersal over geographical maps with changing paleovegetation and paleoclimate in the late Pleistocene. As a proxy for carrying capacity we use Net Primary Productivity (NPP) to predict times for human arrival in the Americas. Public Library of Science 2017-01-13 /pmc/articles/PMC5235379/ /pubmed/28085882 http://dx.doi.org/10.1371/journal.pone.0167514 Text en © 2017 Petersen et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Petersen, W. P. Callegari, S. Lake, G. R. Tkachenko, N. Weissmann, J. D. Zollikofer, Ch. P. E. A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map |
title | A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map |
title_full | A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map |
title_fullStr | A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map |
title_full_unstemmed | A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map |
title_short | A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map |
title_sort | stable finite-difference scheme for population growth and diffusion on a map |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5235379/ https://www.ncbi.nlm.nih.gov/pubmed/28085882 http://dx.doi.org/10.1371/journal.pone.0167514 |
work_keys_str_mv | AT petersenwp astablefinitedifferenceschemeforpopulationgrowthanddiffusiononamap AT callegaris astablefinitedifferenceschemeforpopulationgrowthanddiffusiononamap AT lakegr astablefinitedifferenceschemeforpopulationgrowthanddiffusiononamap AT tkachenkon astablefinitedifferenceschemeforpopulationgrowthanddiffusiononamap AT weissmannjd astablefinitedifferenceschemeforpopulationgrowthanddiffusiononamap AT zollikoferchpe astablefinitedifferenceschemeforpopulationgrowthanddiffusiononamap AT petersenwp stablefinitedifferenceschemeforpopulationgrowthanddiffusiononamap AT callegaris stablefinitedifferenceschemeforpopulationgrowthanddiffusiononamap AT lakegr stablefinitedifferenceschemeforpopulationgrowthanddiffusiononamap AT tkachenkon stablefinitedifferenceschemeforpopulationgrowthanddiffusiononamap AT weissmannjd stablefinitedifferenceschemeforpopulationgrowthanddiffusiononamap AT zollikoferchpe stablefinitedifferenceschemeforpopulationgrowthanddiffusiononamap |