Cargando…
A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map
We describe a general Godunov-type splitting for numerical simulations of the Fisher–Kolmogorov–Petrovski–Piskunov growth and diffusion equation on a world map with Neumann boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal application for this solver is modeling...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5235379/ https://www.ncbi.nlm.nih.gov/pubmed/28085882 http://dx.doi.org/10.1371/journal.pone.0167514 |