Cargando…
A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map
We describe a general Godunov-type splitting for numerical simulations of the Fisher–Kolmogorov–Petrovski–Piskunov growth and diffusion equation on a world map with Neumann boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal application for this solver is modeling...
Autores principales: | Petersen, W. P., Callegari, S., Lake, G. R., Tkachenko, N., Weissmann, J. D., Zollikofer, Ch. P. E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5235379/ https://www.ncbi.nlm.nih.gov/pubmed/28085882 http://dx.doi.org/10.1371/journal.pone.0167514 |
Ejemplares similares
-
Individual-based modelling of population growth and diffusion in discrete time
por: Tkachenko, Natalie, et al.
Publicado: (2017) -
Coefficient datasets for high-order, stable, and conservative boundary schemes for central and compact finite differences
por: Brady, P.T., et al.
Publicado: (2019) -
Exact finite-difference schemes
por: Lemeshevsky, Sergey, et al.
Publicado: (2016) -
On nonstandard finite difference schemes in biosciences
por: Anguelov, R., et al.
Publicado: (2012) -
Finite‐volume scheme for a degenerate cross‐diffusion model motivated from ion transport
por: Cancès, Clément, et al.
Publicado: (2018)