Cargando…
Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence
Species distribution models (SDMs) have become an essential tool in ecology, biogeography, evolution and, more recently, in conservation biology. How to generalize species distributions in large undersampled areas, especially with few samples, is a fundamental issue of SDMs. In order to explore this...
Autores principales: | Mi, Chunrong, Huettmann, Falk, Guo, Yumin, Han, Xuesong, Wen, Lijia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5237372/ https://www.ncbi.nlm.nih.gov/pubmed/28097060 http://dx.doi.org/10.7717/peerj.2849 |
Ejemplares similares
-
Machine Learning Model Analysis of Breeding Habitats for the Black-necked Crane in Central Asian Uplands under Anthropogenic Pressures
por: Han, Xuesong, et al.
Publicado: (2017) -
Climate envelope predictions indicate an enlarged suitable wintering distribution for Great Bustards (Otis tarda dybowskii) in China for the 21st century
por: Mi, Chunrong, et al.
Publicado: (2016) -
Combining occurrence and abundance distribution models for the conservation of the Great Bustard
por: Mi, Chunrong, et al.
Publicado: (2017) -
Storm effects on intertidal invertebrates: increased beta diversity of few individuals and species
por: Corte, Guilherme N., et al.
Publicado: (2017) -
Comparing shade tolerance measures of woody forest species
por: Feng, Jiayi, et al.
Publicado: (2018)