Cargando…
The convergence rate of the proximal alternating direction method of multipliers with indefinite proximal regularization
The proximal alternating direction method of multipliers (P-ADMM) is an efficient first-order method for solving the separable convex minimization problems. Recently, He et al. have further studied the P-ADMM and relaxed the proximal regularization matrix of its second subproblem to be indefinite. T...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5237452/ https://www.ncbi.nlm.nih.gov/pubmed/28133429 http://dx.doi.org/10.1186/s13660-017-1295-1 |
Sumario: | The proximal alternating direction method of multipliers (P-ADMM) is an efficient first-order method for solving the separable convex minimization problems. Recently, He et al. have further studied the P-ADMM and relaxed the proximal regularization matrix of its second subproblem to be indefinite. This is especially significant in practical applications since the indefinite proximal matrix can result in a larger step size for the corresponding subproblem and thus can often accelerate the overall convergence speed of the P-ADMM. In this paper, without the assumptions that the feasible set of the studied problem is bounded or the objective function’s component [Formula: see text] of the studied problem is strongly convex, we prove the worst-case [Formula: see text] convergence rate in an ergodic sense of the P-ADMM with a general Glowinski relaxation factor [Formula: see text] , which is a supplement of the previously known results in this area. Furthermore, some numerical results on compressive sensing are reported to illustrate the effectiveness of the P-ADMM with indefinite proximal regularization. |
---|