Cargando…
Automatic liver segmentation based on appearance and context information
BACKGROUND: Automated image segmentation has benefits for reducing clinicians’ workload, quicker diagnosis, and a standardization of the diagnosis. METHODS: This study proposes an automatic liver segmentation approach based on appearance and context information. The relationship between neighboring...
Autores principales: | Zheng, Yongchang, Ai, Danni, Mu, Jinrong, Cong, Weijian, Wang, Xuan, Zhao, Haitao, Yang, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5237528/ https://www.ncbi.nlm.nih.gov/pubmed/28088195 http://dx.doi.org/10.1186/s12938-016-0296-5 |
Ejemplares similares
-
Feature Learning Based Random Walk for Liver Segmentation
por: Zheng, Yongchang, et al.
Publicado: (2016) -
Adaptive Mesh Expansion Model (AMEM) for Liver Segmentation from CT Image
por: Wang, Xuehu, et al.
Publicado: (2015) -
Semi-automatic liver segmentation based on probabilistic models and anatomical constraints
por: Le, Doan Cong, et al.
Publicado: (2021) -
Adaptive Tensor-Based Principal Component Analysis for Low-Dose CT Image Denoising
por: Ai, Danni, et al.
Publicado: (2015) -
Automatic Liver Segmentation from CT Images Using Single-Block Linear Detection
por: Huang, Lianfen, et al.
Publicado: (2016)