Cargando…
VEGF-B promotes recovery of corneal innervations and trophic functions in diabetic mice
Vascular endothelial growth factor (VEGF)-B possesses the capacity of promoting injured peripheral nerve regeneration and restore their sensory and trophic functions. However, the contribution and mechanism of VEGF-B in diabetic peripheral neuropathy remains unclear. In the present study, we investi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5238415/ https://www.ncbi.nlm.nih.gov/pubmed/28091556 http://dx.doi.org/10.1038/srep40582 |
Sumario: | Vascular endothelial growth factor (VEGF)-B possesses the capacity of promoting injured peripheral nerve regeneration and restore their sensory and trophic functions. However, the contribution and mechanism of VEGF-B in diabetic peripheral neuropathy remains unclear. In the present study, we investigated the expression and role of VEGF-B in diabetic corneal neuropathy by using type 1 diabetic mice and cultured trigeminal ganglion (TG) neurons. Hyperglycemia attenuated the endogenous expression of VEGF-B in regenerated diabetic corneal epithelium, but not that of VEGF receptors in diabetic TG neurons and axons. Exogenous VEGF-B promoted diabetic corneal nerve fiber regeneration through the reactivation of PI-3K/Akt-GSK3β-mTOR signaling and the attenuation of neuronal mitochondria dysfunction via the VEGF receptor-1 and neuropilin-1. Moreover, VEGF-B improved corneal sensation and epithelial regeneration in both normal and diabetic mice, accompanied with the elevated corneal content of pigment epithelial-derived factor (PEDF). PEDF blockade partially abolished trophic function of VEGF-B in diabetic corneal re-innervation. In conclusion, hyperglycemia suppressed endogenous VEGF-B expression in regenerated corneal epithelium of diabetic mice, while exogenous VEGF-B promoted recovery of corneal innervations and trophic functions through reactivating PI-3K/Akt-GSK-3β-mTOR signaling, attenuating neuronal oxidative stress and elevating PEDF expression. |
---|