Cargando…

Dual sources of water overprinting on the low zircon δ(18)O metamorphic country rocks: Disequilibrium constrained through inverse modelling of partial reequilibration

Since water is only composed of oxygen and hydrogen, δ(18)O and δ(2)H values are thus utilized to trace the origin of water(s) and quantify the water-rock interactions. While Triassic high pressure (HP) and ultrahigh pressure (UHP) metamorphic rocks across the Dabie-Sulu orogen in central-eastern Ch...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Chun-Sheng, Zhao, Zi-Fu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5238450/
https://www.ncbi.nlm.nih.gov/pubmed/28091552
http://dx.doi.org/10.1038/srep40334
Descripción
Sumario:Since water is only composed of oxygen and hydrogen, δ(18)O and δ(2)H values are thus utilized to trace the origin of water(s) and quantify the water-rock interactions. While Triassic high pressure (HP) and ultrahigh pressure (UHP) metamorphic rocks across the Dabie-Sulu orogen in central-eastern China have been well documented, postcollisional magmatism driven hydrothermal systems are little known. Here we show that two sources of externally derived water interactions were revealed by oxygen isotopes for the gneissic country rocks intruded by the early Cretaceous postcollisional granitoids. Inverse modellings indicate that the degree of disequilibrium (doD) of meteoric water interactions was more evident than that of magmatic one (−65 ± 1(o) vs. −20 ± 2°); the partial reequilibration between quartz and alkali feldspar oxygen isotopes with magmatic water was achieved at 340 °C with a water/rock (W/R) ratio of about 1.2 for an open-hydrothermal system; two-stage meteoric water interactions were unraveled with reequilibration temperatures less than 300 °C and W/R ratios around 0.4. The lifetime of fossil magmatic hydrothermal system overprinted on the low zircon δ(18)O orthogneissic country rocks was estimated to maintain up to 50 thousand years (Kyr) through oxygen exchange modellings. Four-stage isotopic evolutions were proposed for the magmatic water interacted gneiss.