Cargando…
A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque
Noradrenaline is believed to support cognitive flexibility through the alpha 2A noradrenergic receptor (a2A-NAR) acting in prefrontal cortex. Enhanced flexibility has been inferred from improved working memory with the a2A-NA agonist Guanfacine. But it has been unclear whether Guanfacine improves sp...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5238510/ https://www.ncbi.nlm.nih.gov/pubmed/28091572 http://dx.doi.org/10.1038/srep40606 |
_version_ | 1782495715824500736 |
---|---|
author | Hassani, S. A. Oemisch, M. Balcarras, M. Westendorff, S. Ardid, S. van der Meer, M. A. Tiesinga, P. Womelsdorf, T. |
author_facet | Hassani, S. A. Oemisch, M. Balcarras, M. Westendorff, S. Ardid, S. van der Meer, M. A. Tiesinga, P. Womelsdorf, T. |
author_sort | Hassani, S. A. |
collection | PubMed |
description | Noradrenaline is believed to support cognitive flexibility through the alpha 2A noradrenergic receptor (a2A-NAR) acting in prefrontal cortex. Enhanced flexibility has been inferred from improved working memory with the a2A-NA agonist Guanfacine. But it has been unclear whether Guanfacine improves specific attention and learning mechanisms beyond working memory, and whether the drug effects can be formalized computationally to allow single subject predictions. We tested and confirmed these suggestions in a case study with a healthy nonhuman primate performing a feature-based reversal learning task evaluating performance using Bayesian and Reinforcement learning models. In an initial dose-testing phase we found a Guanfacine dose that increased performance accuracy, decreased distractibility and improved learning. In a second experimental phase using only that dose we examined the faster feature-based reversal learning with Guanfacine with single-subject computational modeling. Parameter estimation suggested that improved learning is not accounted for by varying a single reinforcement learning mechanism, but by changing the set of parameter values to higher learning rates and stronger suppression of non-chosen over chosen feature information. These findings provide an important starting point for developing nonhuman primate models to discern the synaptic mechanisms of attention and learning functions within the context of a computational neuropsychiatry framework. |
format | Online Article Text |
id | pubmed-5238510 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-52385102017-01-19 A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque Hassani, S. A. Oemisch, M. Balcarras, M. Westendorff, S. Ardid, S. van der Meer, M. A. Tiesinga, P. Womelsdorf, T. Sci Rep Article Noradrenaline is believed to support cognitive flexibility through the alpha 2A noradrenergic receptor (a2A-NAR) acting in prefrontal cortex. Enhanced flexibility has been inferred from improved working memory with the a2A-NA agonist Guanfacine. But it has been unclear whether Guanfacine improves specific attention and learning mechanisms beyond working memory, and whether the drug effects can be formalized computationally to allow single subject predictions. We tested and confirmed these suggestions in a case study with a healthy nonhuman primate performing a feature-based reversal learning task evaluating performance using Bayesian and Reinforcement learning models. In an initial dose-testing phase we found a Guanfacine dose that increased performance accuracy, decreased distractibility and improved learning. In a second experimental phase using only that dose we examined the faster feature-based reversal learning with Guanfacine with single-subject computational modeling. Parameter estimation suggested that improved learning is not accounted for by varying a single reinforcement learning mechanism, but by changing the set of parameter values to higher learning rates and stronger suppression of non-chosen over chosen feature information. These findings provide an important starting point for developing nonhuman primate models to discern the synaptic mechanisms of attention and learning functions within the context of a computational neuropsychiatry framework. Nature Publishing Group 2017-01-16 /pmc/articles/PMC5238510/ /pubmed/28091572 http://dx.doi.org/10.1038/srep40606 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Hassani, S. A. Oemisch, M. Balcarras, M. Westendorff, S. Ardid, S. van der Meer, M. A. Tiesinga, P. Womelsdorf, T. A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque |
title | A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque |
title_full | A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque |
title_fullStr | A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque |
title_full_unstemmed | A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque |
title_short | A computational psychiatry approach identifies how alpha-2A noradrenergic agonist Guanfacine affects feature-based reinforcement learning in the macaque |
title_sort | computational psychiatry approach identifies how alpha-2a noradrenergic agonist guanfacine affects feature-based reinforcement learning in the macaque |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5238510/ https://www.ncbi.nlm.nih.gov/pubmed/28091572 http://dx.doi.org/10.1038/srep40606 |
work_keys_str_mv | AT hassanisa acomputationalpsychiatryapproachidentifieshowalpha2anoradrenergicagonistguanfacineaffectsfeaturebasedreinforcementlearninginthemacaque AT oemischm acomputationalpsychiatryapproachidentifieshowalpha2anoradrenergicagonistguanfacineaffectsfeaturebasedreinforcementlearninginthemacaque AT balcarrasm acomputationalpsychiatryapproachidentifieshowalpha2anoradrenergicagonistguanfacineaffectsfeaturebasedreinforcementlearninginthemacaque AT westendorffs acomputationalpsychiatryapproachidentifieshowalpha2anoradrenergicagonistguanfacineaffectsfeaturebasedreinforcementlearninginthemacaque AT ardids acomputationalpsychiatryapproachidentifieshowalpha2anoradrenergicagonistguanfacineaffectsfeaturebasedreinforcementlearninginthemacaque AT vandermeerma acomputationalpsychiatryapproachidentifieshowalpha2anoradrenergicagonistguanfacineaffectsfeaturebasedreinforcementlearninginthemacaque AT tiesingap acomputationalpsychiatryapproachidentifieshowalpha2anoradrenergicagonistguanfacineaffectsfeaturebasedreinforcementlearninginthemacaque AT womelsdorft acomputationalpsychiatryapproachidentifieshowalpha2anoradrenergicagonistguanfacineaffectsfeaturebasedreinforcementlearninginthemacaque AT hassanisa computationalpsychiatryapproachidentifieshowalpha2anoradrenergicagonistguanfacineaffectsfeaturebasedreinforcementlearninginthemacaque AT oemischm computationalpsychiatryapproachidentifieshowalpha2anoradrenergicagonistguanfacineaffectsfeaturebasedreinforcementlearninginthemacaque AT balcarrasm computationalpsychiatryapproachidentifieshowalpha2anoradrenergicagonistguanfacineaffectsfeaturebasedreinforcementlearninginthemacaque AT westendorffs computationalpsychiatryapproachidentifieshowalpha2anoradrenergicagonistguanfacineaffectsfeaturebasedreinforcementlearninginthemacaque AT ardids computationalpsychiatryapproachidentifieshowalpha2anoradrenergicagonistguanfacineaffectsfeaturebasedreinforcementlearninginthemacaque AT vandermeerma computationalpsychiatryapproachidentifieshowalpha2anoradrenergicagonistguanfacineaffectsfeaturebasedreinforcementlearninginthemacaque AT tiesingap computationalpsychiatryapproachidentifieshowalpha2anoradrenergicagonistguanfacineaffectsfeaturebasedreinforcementlearninginthemacaque AT womelsdorft computationalpsychiatryapproachidentifieshowalpha2anoradrenergicagonistguanfacineaffectsfeaturebasedreinforcementlearninginthemacaque |