Cargando…
Protonated paramagnetic redox forms of di-o-quinone bridged with p-phenylene-extended TTF: A EPR spectroscopy study
The chemical oxidation and reduction processes of deprotonated, direduced o-quinone-exTTF-o-quinone in protic solvents were studied by EPR spectroscopy. The formation of relatively stable paramagnetic protonated redox forms of the parent triad was very surprising. The character of spin-density distr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5238573/ https://www.ncbi.nlm.nih.gov/pubmed/28144312 http://dx.doi.org/10.3762/bjoc.12.238 |
Sumario: | The chemical oxidation and reduction processes of deprotonated, direduced o-quinone-exTTF-o-quinone in protic solvents were studied by EPR spectroscopy. The formation of relatively stable paramagnetic protonated redox forms of the parent triad was very surprising. The character of spin-density distribution in the semiquinone–quinone and semiquinone–catechol redox forms indicates that the p-phenylene-extended tetrathiafulvalene connector provides a quite effective electronic communication channel between dioxolene coordination sites. It was found that the deprotonated, direduced o-quinone-exTTF-o-quinone is capable to reduction of the metal copper in solution. The radical anion species formed in this reaction exists in solution as a solvent-separated ion pair with a copper cation. A character of spin-density distribution in a radical anion species leads to the conclusion that the ligand corresponds to type III of the Robin–Day classification. |
---|