Cargando…

Fundamental properties of high-quality carbon nanofoam: from low to high density

Highly uniform samples of carbon nanofoam from hydrothermal sucrose carbonization were studied by helium ion microscopy (HIM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Foams with different densities were produced by changing the process temperature in the autoclave reactor. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Frese, Natalie, Taylor Mitchell, Shelby, Neumann, Christof, Bowers, Amanda, Gölzhäuser, Armin, Sattler, Klaus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5238640/
https://www.ncbi.nlm.nih.gov/pubmed/28144554
http://dx.doi.org/10.3762/bjnano.7.197
Descripción
Sumario:Highly uniform samples of carbon nanofoam from hydrothermal sucrose carbonization were studied by helium ion microscopy (HIM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Foams with different densities were produced by changing the process temperature in the autoclave reactor. This work illustrates how the geometrical structure, electron core levels, and the vibrational signatures change when the density of the foams is varied. We find that the low-density foams have very uniform structure consisting of micropearls with ≈2–3 μm average diameter. Higher density foams contain larger-sized micropearls (≈6–9 μm diameter) which often coalesced to form nonspherical μm-sized units. Both, low- and high-density foams are comprised of predominantly sp(2)-type carbon. The higher density foams, however, show an advanced graphitization degree and a stronger sp(3)-type electronic contribution, related to the inclusion of sp(3) connections in their surface network.