Cargando…
Nanocrystalline TiO(2)/SnO(2) heterostructures for gas sensing
The aim of this research is to study the role of nanocrystalline TiO(2)/SnO(2) n–n heterojunctions for hydrogen sensing. Nanopowders of pure SnO(2), 90 mol % SnO(2)/10 mol % TiO(2), 10 mol % SnO(2)/90 mol % TiO(2) and pure TiO(2) have been obtained using flame spray synthesis (FSS). The samples have...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5238688/ https://www.ncbi.nlm.nih.gov/pubmed/28144570 http://dx.doi.org/10.3762/bjnano.8.12 |
_version_ | 1782495753672851456 |
---|---|
author | Lyson-Sypien, Barbara Kusior, Anna Rekas, Mieczylaw Zukrowski, Jan Gajewska, Marta Michalow-Mauke, Katarzyna Graule, Thomas Radecka, Marta Zakrzewska, Katarzyna |
author_facet | Lyson-Sypien, Barbara Kusior, Anna Rekas, Mieczylaw Zukrowski, Jan Gajewska, Marta Michalow-Mauke, Katarzyna Graule, Thomas Radecka, Marta Zakrzewska, Katarzyna |
author_sort | Lyson-Sypien, Barbara |
collection | PubMed |
description | The aim of this research is to study the role of nanocrystalline TiO(2)/SnO(2) n–n heterojunctions for hydrogen sensing. Nanopowders of pure SnO(2), 90 mol % SnO(2)/10 mol % TiO(2), 10 mol % SnO(2)/90 mol % TiO(2) and pure TiO(2) have been obtained using flame spray synthesis (FSS). The samples have been characterized by BET, XRD, SEM, HR-TEM, Mössbauer effect and impedance spectroscopy. Gas-sensing experiments have been performed for H(2) concentrations of 1–3000 ppm at 200–400 °C. The nanomaterials are well-crystallized, anatase TiO(2), rutile TiO(2) and cassiterite SnO(2) polymorphic forms are present depending on the chemical composition of the powders. The crystallite sizes from XRD peak analysis are within the range of 3–27 nm. Tin exhibits only the oxidation state 4+. The H(2) detection threshold for the studied TiO(2)/SnO(2) heterostructures is lower than 1 ppm especially in the case of SnO(2)-rich samples. The recovery time of SnO(2)-based heterostructures, despite their large responses over the whole measuring range, is much longer than that of TiO(2)-rich samples at higher H(2) flows. TiO(2)/SnO(2) heterostructures can be intentionally modified for the improved H(2) detection within both the small (1–50 ppm) and the large (50–3000 ppm) concentration range. The temperature T(max) at which the semiconducting behavior begins to prevail upon water desorption/oxygen adsorption depends on the TiO(2)/SnO(2) composition. The electrical resistance of sensing materials exhibits a power-law dependence on the H(2) partial pressure. This allows us to draw a conclusion about the first step in the gas sensing mechanism related to the adsorption of oxygen ions at the surface of nanomaterials. |
format | Online Article Text |
id | pubmed-5238688 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Beilstein-Institut |
record_format | MEDLINE/PubMed |
spelling | pubmed-52386882017-01-31 Nanocrystalline TiO(2)/SnO(2) heterostructures for gas sensing Lyson-Sypien, Barbara Kusior, Anna Rekas, Mieczylaw Zukrowski, Jan Gajewska, Marta Michalow-Mauke, Katarzyna Graule, Thomas Radecka, Marta Zakrzewska, Katarzyna Beilstein J Nanotechnol Full Research Paper The aim of this research is to study the role of nanocrystalline TiO(2)/SnO(2) n–n heterojunctions for hydrogen sensing. Nanopowders of pure SnO(2), 90 mol % SnO(2)/10 mol % TiO(2), 10 mol % SnO(2)/90 mol % TiO(2) and pure TiO(2) have been obtained using flame spray synthesis (FSS). The samples have been characterized by BET, XRD, SEM, HR-TEM, Mössbauer effect and impedance spectroscopy. Gas-sensing experiments have been performed for H(2) concentrations of 1–3000 ppm at 200–400 °C. The nanomaterials are well-crystallized, anatase TiO(2), rutile TiO(2) and cassiterite SnO(2) polymorphic forms are present depending on the chemical composition of the powders. The crystallite sizes from XRD peak analysis are within the range of 3–27 nm. Tin exhibits only the oxidation state 4+. The H(2) detection threshold for the studied TiO(2)/SnO(2) heterostructures is lower than 1 ppm especially in the case of SnO(2)-rich samples. The recovery time of SnO(2)-based heterostructures, despite their large responses over the whole measuring range, is much longer than that of TiO(2)-rich samples at higher H(2) flows. TiO(2)/SnO(2) heterostructures can be intentionally modified for the improved H(2) detection within both the small (1–50 ppm) and the large (50–3000 ppm) concentration range. The temperature T(max) at which the semiconducting behavior begins to prevail upon water desorption/oxygen adsorption depends on the TiO(2)/SnO(2) composition. The electrical resistance of sensing materials exhibits a power-law dependence on the H(2) partial pressure. This allows us to draw a conclusion about the first step in the gas sensing mechanism related to the adsorption of oxygen ions at the surface of nanomaterials. Beilstein-Institut 2017-01-12 /pmc/articles/PMC5238688/ /pubmed/28144570 http://dx.doi.org/10.3762/bjnano.8.12 Text en Copyright © 2017, Lyson-Sypien et al. https://creativecommons.org/licenses/by/4.0https://www.beilstein-journals.org/bjnano/termsThis is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms) |
spellingShingle | Full Research Paper Lyson-Sypien, Barbara Kusior, Anna Rekas, Mieczylaw Zukrowski, Jan Gajewska, Marta Michalow-Mauke, Katarzyna Graule, Thomas Radecka, Marta Zakrzewska, Katarzyna Nanocrystalline TiO(2)/SnO(2) heterostructures for gas sensing |
title | Nanocrystalline TiO(2)/SnO(2) heterostructures for gas sensing |
title_full | Nanocrystalline TiO(2)/SnO(2) heterostructures for gas sensing |
title_fullStr | Nanocrystalline TiO(2)/SnO(2) heterostructures for gas sensing |
title_full_unstemmed | Nanocrystalline TiO(2)/SnO(2) heterostructures for gas sensing |
title_short | Nanocrystalline TiO(2)/SnO(2) heterostructures for gas sensing |
title_sort | nanocrystalline tio(2)/sno(2) heterostructures for gas sensing |
topic | Full Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5238688/ https://www.ncbi.nlm.nih.gov/pubmed/28144570 http://dx.doi.org/10.3762/bjnano.8.12 |
work_keys_str_mv | AT lysonsypienbarbara nanocrystallinetio2sno2heterostructuresforgassensing AT kusioranna nanocrystallinetio2sno2heterostructuresforgassensing AT rekasmieczylaw nanocrystallinetio2sno2heterostructuresforgassensing AT zukrowskijan nanocrystallinetio2sno2heterostructuresforgassensing AT gajewskamarta nanocrystallinetio2sno2heterostructuresforgassensing AT michalowmaukekatarzyna nanocrystallinetio2sno2heterostructuresforgassensing AT graulethomas nanocrystallinetio2sno2heterostructuresforgassensing AT radeckamarta nanocrystallinetio2sno2heterostructuresforgassensing AT zakrzewskakatarzyna nanocrystallinetio2sno2heterostructuresforgassensing |