Cargando…
Computational intelligence models to predict porosity of tablets using minimum features
The effects of different formulations and manufacturing process conditions on the physical properties of a solid dosage form are of importance to the pharmaceutical industry. It is vital to have in-depth understanding of the material properties and governing parameters of its processes in response t...
Autores principales: | Khalid, Mohammad Hassan, Kazemi, Pezhman, Perez-Gandarillas, Lucia, Michrafy, Abderrahim, Szlęk, Jakub, Jachowicz, Renata, Mendyk, Aleksander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5238813/ https://www.ncbi.nlm.nih.gov/pubmed/28138223 http://dx.doi.org/10.2147/DDDT.S119432 |
Ejemplares similares
-
Effect of roll compaction on granule size distribution of microcrystalline cellulose–mannitol mixtures: computational intelligence modeling and parametric analysis
por: Kazemi, Pezhman, et al.
Publicado: (2017) -
Computational Intelligence Modeling of the Macromolecules Release from PLGA Microspheres—Focus on Feature Selection
por: Zawbaa, Hossam M., et al.
Publicado: (2016) -
Heuristic modeling of macromolecule release from PLGA microspheres
por: Szlęk, Jakub, et al.
Publicado: (2013) -
Empirical modeling of the fine particle fraction for carrier-based pulmonary delivery formulations
por: Pacławski, Adam, et al.
Publicado: (2015) -
From Heuristic to Mathematical Modeling of Drugs Dissolution Profiles: Application of Artificial Neural Networks and Genetic Programming
por: Mendyk, Aleksander, et al.
Publicado: (2015)