Cargando…
An NPF Transporter Exports a Central Monoterpene Indole Alkaloid Intermediate from the Vacuole
Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that include the anti-cancer agent vincristine, anti-malar...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5238941/ https://www.ncbi.nlm.nih.gov/pubmed/28085153 http://dx.doi.org/10.1038/nplants.2016.208 |
Sumario: | Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that include the anti-cancer agent vincristine, anti-malarial quinine and neurotoxin strychnine, are synthesized in several different cellular locations. However, the transporters that control the movement of these biosynthetic intermediates within cellular compartments have not been discovered. Here we present the discovery of a tonoplast localized Nitrate/Peptide Family (NPF) transporter from Catharanthus roseus, CrNPF2.9, that exports strictosidine, the central intermediate of this pathway, into the cytosol from the vacuole. This discovery highlights the role that intracellular localization plays in specialized metabolism, and sets the stage for understanding and controlling the central branch point of this pharmacologically important group of compounds. |
---|