Cargando…

Inhibition of endoplasmic reticulum (ER) stress sensors sensitizes cancer stem-like cells to ER stress-mediated apoptosis

Although cancer stem cells (CSC) have been implicated in the development of resistance to anti-cancer therapy including chemotherapy, the mechanisms underlying chemo-resistance by CSC have not yet been elucidated. We herein isolated sphere-forming (cancer stem-like) cells from the cervical cancer ce...

Descripción completa

Detalles Bibliográficos
Autores principales: Fujimoto, Asaha, Kawana, Kei, Taguchi, Ayumi, Adachi, Katsuyuki, Sato, Masakazu, Nakamura, Hiroe, Ogishima, Juri, Yoshida, Mitsuyo, Inoue, Tomoko, Nishida, Haruka, Tomio, Kensuke, Yamashita, Aki, Matsumoto, Yoko, Arimoto, Takahide, Wada-Hiraike, Osamu, Oda, Katsutoshi, Nagamatsu, Takeshi, Osuga, Yutaka, Fujii, Tomoyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5239519/
https://www.ncbi.nlm.nih.gov/pubmed/27322083
http://dx.doi.org/10.18632/oncotarget.10126
Descripción
Sumario:Although cancer stem cells (CSC) have been implicated in the development of resistance to anti-cancer therapy including chemotherapy, the mechanisms underlying chemo-resistance by CSC have not yet been elucidated. We herein isolated sphere-forming (cancer stem-like) cells from the cervical cancer cell line, SiHa, and examined the unfolded protein reaction (UPR) to chemotherapeutic-induced endoplasmic reticulum (ER) stress. We revealed that tunicamycin-induced ER stress-mediated apoptosis occurred in monolayer, but not sphere-forming cells. Biochemical assays demonstrated that sphere-forming cells were shifted to pro-survival signaling through the inactivation of IRE1 (XBP-1 splicing) and activation of PERK (elF2α phosphorylation) branches under tunicamycin-induced ER stress conditions. The proportion of apoptotic cells among sphere-forming cells was markedly increased by the tunicamycin+PERK inhibitor (PERKi) treatment, indicating that PERKi sensitized sphere-forming cells to tunicamycin-induced apoptosis. Cisplatin is also known to induce ER stress-mediated apoptosis. A low concentration of cisplatin failed to shift sphere-forming cells to apoptosis, although IRE1 branch, but not PERK, was activated. ER stress-mediated apoptosis occurred in sphere-forming cells by the cisplatin+IRE1α inhibitor (IRE1i) treatment. IRE1i, synergistic with cisplatin, up-regulated elF2α phosphorylation, and this was followed by the induction of CHOP in sphere-forming cells. The results of the present study demonstrated that the inhibition of ER stress sensors, combined with ER stress-inducible chemotherapy, shifted cancer stem-like cells to ER stress-mediated apoptosis.