Cargando…

Evidence of neofunctionalization after the duplication of the highly conserved Polycomb group gene Caf1-55 in the obscura group of Drosophila

Drosophila CAF1-55 protein is a subunit of the Polycomb repressive complex PRC2 and other protein complexes. It is a multifunctional and evolutionarily conserved protein that participates in nucleosome assembly and remodelling, as well as in the epigenetic regulation of a large set of target genes....

Descripción completa

Detalles Bibliográficos
Autores principales: Calvo-Martín, Juan M., Papaceit, Montserrat, Segarra, Carmen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240099/
https://www.ncbi.nlm.nih.gov/pubmed/28094282
http://dx.doi.org/10.1038/srep40536
Descripción
Sumario:Drosophila CAF1-55 protein is a subunit of the Polycomb repressive complex PRC2 and other protein complexes. It is a multifunctional and evolutionarily conserved protein that participates in nucleosome assembly and remodelling, as well as in the epigenetic regulation of a large set of target genes. Here, we describe and analyze the duplication of Caf1-55 in the obscura group of Drosophila. Paralogs exhibited a strong asymmetry in evolutionary rates, which suggests that they have evolved according to a neofunctionalization process. During this process, the ancestral copy has been kept under steady purifying selection to retain the ancestral function and the derived copy (Caf1-55dup) that originated via a DNA-mediated duplication event ~18 Mya, has been under clear episodic selection. Different maximum likelihood approaches confirmed the action of positive selection, in contrast to relaxed selection, on Caf1-55dup after the duplication. This adaptive process has also taken place more recently during the divergence of D. subobscura and D. guanche. The possible association of this duplication with a previously detected acceleration in the evolutionary rate of three CAF1-55 partners in PRC2 complexes is discussed. Finally, the timing and functional consequences of the Caf1-55 duplication is compared to other duplications of Polycomb genes.