Cargando…
Cross feeding of glucose metabolism byproducts of Escherichia coli human gut isolates and probiotic strains affect survival of Vibrio cholerae
Vibrio cholerae converts glucose into either acid or the neutral end product acetoin and its survival in carbohydrate enriched media is linked to the nature of the byproducts produced. It has been demonstrated in this study that Escherichia coli strain isolated from the gut of healthy human voluntee...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240293/ https://www.ncbi.nlm.nih.gov/pubmed/28105081 http://dx.doi.org/10.1186/s13099-016-0153-x |
Sumario: | Vibrio cholerae converts glucose into either acid or the neutral end product acetoin and its survival in carbohydrate enriched media is linked to the nature of the byproducts produced. It has been demonstrated in this study that Escherichia coli strain isolated from the gut of healthy human volunteers and the commonly used probiotic E. coli Nissle strain that metabolize glucose to acidic byproducts drastically reduce the survival of V. cholerae strains irrespective of their glucose sensitivity and acetoin production status. Accordingly, E. coli glucose transport mutants that produce lower amounts of acidic metabolites had little effect on the survival of V. cholerae in cocultures. Thus, cross feeding of byproducts of glucose metabolism by heterologous bacteria modulates the survival of V. cholerae in glucose rich medium suggesting that composition of the gut microbiota could influence the outcome of V. cholerae infection especially when glucose based ORS is administered. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13099-016-0153-x) contains supplementary material, which is available to authorized users. |
---|