Cargando…
Blue Laser Diode Enables Underwater Communication at 12.4 Gbps
To enable high-speed underwater wireless optical communication (UWOC) in tap-water and seawater environments over long distances, a 450-nm blue GaN laser diode (LD) directly modulated by pre-leveled 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data was e...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240338/ https://www.ncbi.nlm.nih.gov/pubmed/28094309 http://dx.doi.org/10.1038/srep40480 |
Sumario: | To enable high-speed underwater wireless optical communication (UWOC) in tap-water and seawater environments over long distances, a 450-nm blue GaN laser diode (LD) directly modulated by pre-leveled 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data was employed to implement its maximal transmission capacity of up to 10 Gbps. The proposed UWOC in tap water provided a maximal allowable communication bit rate increase from 5.2 to 12.4 Gbps with the corresponding underwater transmission distance significantly reduced from 10.2 to 1.7 m, exhibiting a bit rate/distance decaying slope of −0.847 Gbps/m. When conducting the same type of UWOC in seawater, light scattering induced by impurities attenuated the blue laser power, thereby degrading the transmission with a slightly higher decay ratio of 0.941 Gbps/m. The blue LD based UWOC enables a 16-QAM OFDM bit rate of up to 7.2 Gbps for transmission in seawater more than 6.8 m. |
---|