Cargando…
Electronegative LDL-mediated cardiac electrical remodeling in a rat model of chronic kidney disease
The mechanisms underlying chronic kidney disease (CKD)–associated higher risks for life-threatening ventricular tachyarrhythmias remain poorly understood. In rats subjected to unilateral nephrectomy (UNx), we examined cardiac electrophysiological remodeling and relevant mechanisms predisposing to ve...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240592/ https://www.ncbi.nlm.nih.gov/pubmed/28094801 http://dx.doi.org/10.1038/srep40676 |
Sumario: | The mechanisms underlying chronic kidney disease (CKD)–associated higher risks for life-threatening ventricular tachyarrhythmias remain poorly understood. In rats subjected to unilateral nephrectomy (UNx), we examined cardiac electrophysiological remodeling and relevant mechanisms predisposing to ventricular arrhythmias. Adult male Sprague-Dawley rats underwent UNx (n = 6) or sham (n = 6) operations. Eight weeks later, the UNx group had higher serum blood urea nitrogen and creatinine levels and a longer electrocardiographic QTc interval than did the sham group. Patch-clamp studies revealed epicardial (EPI)-predominant prolongation of the action potential duration (APD) at 50% and 90% repolarization in UNx EPI cardiomyocytes compared to sham EPI cardiomyocytes. A significant reduction of the transient outward potassium current (I(to)) in EPI but not in endocardial (ENDO) cardiomyocytes of UNx rats led to a decreased transmural gradient of I(to). The reduction of I(to) currents in UNx EPI cardiomyocytes was secondary to downregulation of KChIP2 but not Kv4.2, Kv4.3, and Kv1.4 protein expression. Incubation of plasma electronegative low-density lipoprotein (LDL) from UNx rats with normal EPI and ENDO cardiomyocytes recapitulated the electrophysiological phenotype of UNx rats. In conclusion, CKD disrupts the physiological transmural gradient of I(to) via downregulation of KChIP2 proteins in the EPI region, which may promote susceptibility to ventricular tachyarrhythmias. Electronegative LDL may underlie downregulation of KChIP2 in CKD. |
---|