Cargando…

Phylogenetically Widespread Polyembryony in Cyclostome Bryozoans and the Protracted Asynchronous Release of Clonal Brood-Mates

Polyembryony–the production of multiple cloned embryos from a single fertilised egg–is a seemingly paradoxical combination of reproductive modes that nevertheless persists in diverse taxa. We document features of polyembryony in the Cyclostomata (Bryozoa)–an ancient order of modular colonial marine...

Descripción completa

Detalles Bibliográficos
Autores principales: Jenkins, Helen L., Waeschenbach, Andrea, Okamura, Beth, Hughes, Roger N., Bishop, John D. D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240946/
https://www.ncbi.nlm.nih.gov/pubmed/28095467
http://dx.doi.org/10.1371/journal.pone.0170010
Descripción
Sumario:Polyembryony–the production of multiple cloned embryos from a single fertilised egg–is a seemingly paradoxical combination of reproductive modes that nevertheless persists in diverse taxa. We document features of polyembryony in the Cyclostomata (Bryozoa)–an ancient order of modular colonial marine invertebrates–that suggest a substantial reduction in the paradoxical nature of this enigmatic reproductive mode. Firstly, we provide molecular evidence for polyembryony in three exemplar species, supporting the widely cited inference that polyembryony characterises the entire order. Secondly, genotyping demonstrates protracted release of cloned offspring from the primary embryo in a given gonozooid (chamber for embryonic incubation), thus exposing the same genotype to changing environmental conditions over time. Finally, we confirm that each gonozooid produces a distinct genotype, with each primary embryo being the result of a separate fertilisation event. We hypothesise that the sustained release of one or a few genotypes against varying environmental conditions achieves levels of risk-spreading similar to those in organisms that release multiple, unique genotypes at a single time. We argue that polyembryony, specifically with the production of a large number of progeny per fertilisation event, has been favoured in the Cyclostomata over long geological periods.