Cargando…
Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi
The functional integrity of the intestinal epithelial barrier relies on tight coordination of cell proliferation and migration, with failure to regulate these processes resulting in disease. It is not known whether cell proliferation is sufficient to drive epithelial cell migration during homoeostat...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Federation of American Societies for Experimental Biology
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241155/ https://www.ncbi.nlm.nih.gov/pubmed/27811059 http://dx.doi.org/10.1096/fj.201601002 |
_version_ | 1782496146366660608 |
---|---|
author | Parker, Aimee Maclaren, Oliver J. Fletcher, Alexander G. Muraro, Daniele Kreuzaler, Peter A. Byrne, Helen M. Maini, Philip K. Watson, Alastair J. M. Pin, Carmen |
author_facet | Parker, Aimee Maclaren, Oliver J. Fletcher, Alexander G. Muraro, Daniele Kreuzaler, Peter A. Byrne, Helen M. Maini, Philip K. Watson, Alastair J. M. Pin, Carmen |
author_sort | Parker, Aimee |
collection | PubMed |
description | The functional integrity of the intestinal epithelial barrier relies on tight coordination of cell proliferation and migration, with failure to regulate these processes resulting in disease. It is not known whether cell proliferation is sufficient to drive epithelial cell migration during homoeostatic turnover of the epithelium. Nor is it known precisely how villus cell migration is affected when proliferation is perturbed. Some reports suggest that proliferation and migration may not be related while other studies support a direct relationship. We used established cell-tracking methods based on thymine analog cell labeling and developed tailored mathematical models to quantify cell proliferation and migration under normal conditions and when proliferation is reduced and when it is temporarily halted. We found that epithelial cell migration velocities along the villi are coupled to cell proliferation rates within the crypts in all conditions. Furthermore, halting and resuming proliferation results in the synchronized response of cell migration on the villi. We conclude that cell proliferation within the crypt is the primary force that drives cell migration along the villus. This methodology can be applied to interrogate intestinal epithelial dynamics and characterize situations in which processes involved in cell turnover become uncoupled, including pharmacological treatments and disease models.—Parker, A., Maclaren, O. J., Fletcher, A. G., Muraro, D., Kreuzaler, P. A., Byrne, H. M., Maini, P. K., Watson, A. J. M., Pin, C. Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi. |
format | Online Article Text |
id | pubmed-5241155 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Federation of American Societies for Experimental Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-52411552017-01-23 Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi Parker, Aimee Maclaren, Oliver J. Fletcher, Alexander G. Muraro, Daniele Kreuzaler, Peter A. Byrne, Helen M. Maini, Philip K. Watson, Alastair J. M. Pin, Carmen FASEB J Research The functional integrity of the intestinal epithelial barrier relies on tight coordination of cell proliferation and migration, with failure to regulate these processes resulting in disease. It is not known whether cell proliferation is sufficient to drive epithelial cell migration during homoeostatic turnover of the epithelium. Nor is it known precisely how villus cell migration is affected when proliferation is perturbed. Some reports suggest that proliferation and migration may not be related while other studies support a direct relationship. We used established cell-tracking methods based on thymine analog cell labeling and developed tailored mathematical models to quantify cell proliferation and migration under normal conditions and when proliferation is reduced and when it is temporarily halted. We found that epithelial cell migration velocities along the villi are coupled to cell proliferation rates within the crypts in all conditions. Furthermore, halting and resuming proliferation results in the synchronized response of cell migration on the villi. We conclude that cell proliferation within the crypt is the primary force that drives cell migration along the villus. This methodology can be applied to interrogate intestinal epithelial dynamics and characterize situations in which processes involved in cell turnover become uncoupled, including pharmacological treatments and disease models.—Parker, A., Maclaren, O. J., Fletcher, A. G., Muraro, D., Kreuzaler, P. A., Byrne, H. M., Maini, P. K., Watson, A. J. M., Pin, C. Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi. Federation of American Societies for Experimental Biology 2017-02 2016-10-20 /pmc/articles/PMC5241155/ /pubmed/27811059 http://dx.doi.org/10.1096/fj.201601002 Text en © The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Parker, Aimee Maclaren, Oliver J. Fletcher, Alexander G. Muraro, Daniele Kreuzaler, Peter A. Byrne, Helen M. Maini, Philip K. Watson, Alastair J. M. Pin, Carmen Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi |
title | Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi |
title_full | Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi |
title_fullStr | Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi |
title_full_unstemmed | Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi |
title_short | Cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi |
title_sort | cell proliferation within small intestinal crypts is the principal driving force for cell migration on villi |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241155/ https://www.ncbi.nlm.nih.gov/pubmed/27811059 http://dx.doi.org/10.1096/fj.201601002 |
work_keys_str_mv | AT parkeraimee cellproliferationwithinsmallintestinalcryptsistheprincipaldrivingforceforcellmigrationonvilli AT maclarenoliverj cellproliferationwithinsmallintestinalcryptsistheprincipaldrivingforceforcellmigrationonvilli AT fletcheralexanderg cellproliferationwithinsmallintestinalcryptsistheprincipaldrivingforceforcellmigrationonvilli AT murarodaniele cellproliferationwithinsmallintestinalcryptsistheprincipaldrivingforceforcellmigrationonvilli AT kreuzalerpetera cellproliferationwithinsmallintestinalcryptsistheprincipaldrivingforceforcellmigrationonvilli AT byrnehelenm cellproliferationwithinsmallintestinalcryptsistheprincipaldrivingforceforcellmigrationonvilli AT mainiphilipk cellproliferationwithinsmallintestinalcryptsistheprincipaldrivingforceforcellmigrationonvilli AT watsonalastairjm cellproliferationwithinsmallintestinalcryptsistheprincipaldrivingforceforcellmigrationonvilli AT pincarmen cellproliferationwithinsmallintestinalcryptsistheprincipaldrivingforceforcellmigrationonvilli |