Cargando…
Inference of Gene Regulatory Networks Using Bayesian Nonparametric Regression and Topology Information
Gene regulatory networks (GRNs) play an important role in cellular systems and are important for understanding biological processes. Many algorithms have been developed to infer the GRNs. However, most algorithms only pay attention to the gene expression data but do not consider the topology informa...
Autores principales: | Fan, Yue, Wang, Xiao, Peng, Qinke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241943/ https://www.ncbi.nlm.nih.gov/pubmed/28133490 http://dx.doi.org/10.1155/2017/8307530 |
Ejemplares similares
-
Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks
por: Penfold, Christopher A., et al.
Publicado: (2012) -
Nonparametric Bayesian inference in biostatistics
por: Mitra, Riten, et al.
Publicado: (2015) -
Bayesian Gene Selection Based on Pathway Information and Network-Constrained Regularization
por: Cao, Ming, et al.
Publicado: (2021) -
Bayesian Nonparametric Modeling of Categorical Data for Information Fusion and Causal Inference †
por: Xiong, Sihan, et al.
Publicado: (2018) -
Bayesian nonparametric inference for heterogeneously mixing infectious disease models
por: Seymour, Rowland G., et al.
Publicado: (2022)