Cargando…

5’UTR point substitutions and N-terminal truncating mutations of ANKRD26 in acute myeloid leukemia

Thrombocytopenia 2 (THC2) is an inherited disorder caused by monoallelic single nucleotide substitutions in the 5’UTR of the ANKRD26 gene. Patients have thrombocytopenia and increased risk of myeloid malignancies, in particular, acute myeloid leukemia (AML). Given the association of variants in the...

Descripción completa

Detalles Bibliográficos
Autores principales: Marconi, Caterina, Canobbio, Ilaria, Bozzi, Valeria, Pippucci, Tommaso, Simonetti, Giorgia, Melazzini, Federica, Angori, Silvia, Martinelli, Giovanni, Saglio, Giuseppe, Torti, Mauro, Pastan, Ira, Seri, Marco, Pecci, Alessandro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242010/
https://www.ncbi.nlm.nih.gov/pubmed/28100250
http://dx.doi.org/10.1186/s13045-016-0382-y
Descripción
Sumario:Thrombocytopenia 2 (THC2) is an inherited disorder caused by monoallelic single nucleotide substitutions in the 5’UTR of the ANKRD26 gene. Patients have thrombocytopenia and increased risk of myeloid malignancies, in particular, acute myeloid leukemia (AML). Given the association of variants in the ANKRD26 5’UTR with myeloid neoplasms, we investigated whether, and to what extent, mutations in this region contribute to apparently sporadic AML. To this end, we studied 250 consecutive, non-familial, adult AML patients and screened the first exon of ANKRD26 including the 5’UTR. We found variants in four patients. One patient had the c.−125T>G substitution in the 5’UTR, while three patients carried two different variants in the 5’ end of the ANKRD26 coding region (c.3G>A or c.105C>G). Review of medical history showed that the patient carrying the c.−125T>G was actually affected by typical but unrecognized THC2, highlighting that some apparently sporadic AML cases represent the evolution of a well-characterized familial predisposition disorder. As regards the c.3G>A and the c.105C>G, we found that both variants result in the synthesis of N-terminal truncated ANKRD26 isoforms, which are stable and functional in cells, in particular, have a strong ability to activate the MAPK/ERK signaling pathway. Moreover, investigation of one patient with the c.3G>A showed that mutation was associated with strong ANKRD26 overexpression in vivo, which is the proposed mechanism for predisposition to AML in THC2 patients. These data provide evidence that N-terminal ANKRD26 truncating mutations play a potential pathogenetic role in AML. Recognition of AML patients with germline ANKRD26 pathogenetic variants is mandatory for selection of donors for bone marrow transplantation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13045-016-0382-y) contains supplementary material, which is available to authorized users.