Cargando…
Genome-Wide Immune Modulation of TLR3-Mediated Inflammation in Intestinal Epithelial Cells Differs between Single and Multi-Strain Probiotic Combination
Genome-wide transcriptional analysis in intestinal epithelial cells (IEC) can aid in elucidating the impact of single versus multi-strain probiotic combinations on immunological and cellular mechanisms of action. In this study we used human expression microarray chips in an in vitro intestinal epith...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242491/ https://www.ncbi.nlm.nih.gov/pubmed/28099447 http://dx.doi.org/10.1371/journal.pone.0169847 |
_version_ | 1782496341830664192 |
---|---|
author | MacPherson, Chad W. Shastri, Padmaja Mathieu, Olivier Tompkins, Thomas A. Burguière, Pierre |
author_facet | MacPherson, Chad W. Shastri, Padmaja Mathieu, Olivier Tompkins, Thomas A. Burguière, Pierre |
author_sort | MacPherson, Chad W. |
collection | PubMed |
description | Genome-wide transcriptional analysis in intestinal epithelial cells (IEC) can aid in elucidating the impact of single versus multi-strain probiotic combinations on immunological and cellular mechanisms of action. In this study we used human expression microarray chips in an in vitro intestinal epithelial cell model to investigate the impact of three probiotic bacteria, Lactobacillus helveticus R0052 (Lh-R0052), Bifidobacterium longum subsp. infantis R0033 (Bl-R0033) and Bifidobacterium bifidum R0071 (Bb-R0071) individually and in combination, and of a surface-layer protein (SLP) purified from Lh-R0052, on HT-29 cells’ transcriptional profile to poly(I:C)-induced inflammation. Hierarchical heat map clustering, Set Distiller and String analyses revealed that the effects of Lh-R0052 and Bb-R0071 diverged from those of Bl-R0033 and Lh-R0052-SLP. It was evident from the global analyses with respect to the immune, cellular and homeostasis related pathways that the co-challenge with probiotic combination (PC) vastly differed in its effect from the single strains and Lh-R0052-SLP treatments. The multi-strain PC resulted in a greater reduction of modulated genes, found through functional connections between immune and cellular pathways. Cytokine and chemokine analyses based on specific outcomes from the TNF-α and NF-κB signaling pathways revealed single, multi-strain and Lh-R0052-SLP specific attenuation of the majority of proteins measured (TNF-α, IL-8, CXCL1, CXCL2 and CXCL10), indicating potentially different mechanisms. These findings indicate a synergistic effect of the bacterial combinations relative to the single strain and Lh-R0052-SLP treatments in resolving toll-like receptor 3 (TLR3)-induced inflammation in IEC and maintaining cellular homeostasis, reinforcing the rationale for using multi-strain formulations as a probiotic. |
format | Online Article Text |
id | pubmed-5242491 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-52424912017-02-06 Genome-Wide Immune Modulation of TLR3-Mediated Inflammation in Intestinal Epithelial Cells Differs between Single and Multi-Strain Probiotic Combination MacPherson, Chad W. Shastri, Padmaja Mathieu, Olivier Tompkins, Thomas A. Burguière, Pierre PLoS One Research Article Genome-wide transcriptional analysis in intestinal epithelial cells (IEC) can aid in elucidating the impact of single versus multi-strain probiotic combinations on immunological and cellular mechanisms of action. In this study we used human expression microarray chips in an in vitro intestinal epithelial cell model to investigate the impact of three probiotic bacteria, Lactobacillus helveticus R0052 (Lh-R0052), Bifidobacterium longum subsp. infantis R0033 (Bl-R0033) and Bifidobacterium bifidum R0071 (Bb-R0071) individually and in combination, and of a surface-layer protein (SLP) purified from Lh-R0052, on HT-29 cells’ transcriptional profile to poly(I:C)-induced inflammation. Hierarchical heat map clustering, Set Distiller and String analyses revealed that the effects of Lh-R0052 and Bb-R0071 diverged from those of Bl-R0033 and Lh-R0052-SLP. It was evident from the global analyses with respect to the immune, cellular and homeostasis related pathways that the co-challenge with probiotic combination (PC) vastly differed in its effect from the single strains and Lh-R0052-SLP treatments. The multi-strain PC resulted in a greater reduction of modulated genes, found through functional connections between immune and cellular pathways. Cytokine and chemokine analyses based on specific outcomes from the TNF-α and NF-κB signaling pathways revealed single, multi-strain and Lh-R0052-SLP specific attenuation of the majority of proteins measured (TNF-α, IL-8, CXCL1, CXCL2 and CXCL10), indicating potentially different mechanisms. These findings indicate a synergistic effect of the bacterial combinations relative to the single strain and Lh-R0052-SLP treatments in resolving toll-like receptor 3 (TLR3)-induced inflammation in IEC and maintaining cellular homeostasis, reinforcing the rationale for using multi-strain formulations as a probiotic. Public Library of Science 2017-01-18 /pmc/articles/PMC5242491/ /pubmed/28099447 http://dx.doi.org/10.1371/journal.pone.0169847 Text en © 2017 MacPherson et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article MacPherson, Chad W. Shastri, Padmaja Mathieu, Olivier Tompkins, Thomas A. Burguière, Pierre Genome-Wide Immune Modulation of TLR3-Mediated Inflammation in Intestinal Epithelial Cells Differs between Single and Multi-Strain Probiotic Combination |
title | Genome-Wide Immune Modulation of TLR3-Mediated Inflammation in Intestinal Epithelial Cells Differs between Single and Multi-Strain Probiotic Combination |
title_full | Genome-Wide Immune Modulation of TLR3-Mediated Inflammation in Intestinal Epithelial Cells Differs between Single and Multi-Strain Probiotic Combination |
title_fullStr | Genome-Wide Immune Modulation of TLR3-Mediated Inflammation in Intestinal Epithelial Cells Differs between Single and Multi-Strain Probiotic Combination |
title_full_unstemmed | Genome-Wide Immune Modulation of TLR3-Mediated Inflammation in Intestinal Epithelial Cells Differs between Single and Multi-Strain Probiotic Combination |
title_short | Genome-Wide Immune Modulation of TLR3-Mediated Inflammation in Intestinal Epithelial Cells Differs between Single and Multi-Strain Probiotic Combination |
title_sort | genome-wide immune modulation of tlr3-mediated inflammation in intestinal epithelial cells differs between single and multi-strain probiotic combination |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5242491/ https://www.ncbi.nlm.nih.gov/pubmed/28099447 http://dx.doi.org/10.1371/journal.pone.0169847 |
work_keys_str_mv | AT macphersonchadw genomewideimmunemodulationoftlr3mediatedinflammationinintestinalepithelialcellsdiffersbetweensingleandmultistrainprobioticcombination AT shastripadmaja genomewideimmunemodulationoftlr3mediatedinflammationinintestinalepithelialcellsdiffersbetweensingleandmultistrainprobioticcombination AT mathieuolivier genomewideimmunemodulationoftlr3mediatedinflammationinintestinalepithelialcellsdiffersbetweensingleandmultistrainprobioticcombination AT tompkinsthomasa genomewideimmunemodulationoftlr3mediatedinflammationinintestinalepithelialcellsdiffersbetweensingleandmultistrainprobioticcombination AT burguierepierre genomewideimmunemodulationoftlr3mediatedinflammationinintestinalepithelialcellsdiffersbetweensingleandmultistrainprobioticcombination |