Cargando…
Temporal Feature Extraction from DCE-MRI to Identify Poorly Perfused Subvolumes of Tumors Related to Outcomes of Radiation Therapy in Head and Neck Cancer
This study aimed to develop an automated model to extract temporal features from DCE-MRI in head-and-neck (HN) cancers to localize significant tumor subvolumes having low blood volume (LBV) for predicting local and regional failure after chemoradiation therapy. Temporal features were extracted from...
Autores principales: | You, Daekeun, Aryal, Madhava, Samuels, Stuart E., Eisbruch, Avraham, Cao, Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Grapho Publications, LLC
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243121/ https://www.ncbi.nlm.nih.gov/pubmed/28111634 http://dx.doi.org/10.18383/j.tom.2016.00199 |
Ejemplares similares
-
Real-Time Quantitative Assessment of Accuracy and Precision of Blood Volume Derived from DCE-MRI in Individual Patients During a Clinical Trial
por: Aryal, Madhava P., et al.
Publicado: (2019) -
IMRT for head and neck cancer: reducing xerostomia and dysphagia
por: Wang, XiaoShen, et al.
Publicado: (2016) -
Predictive Values of MRI and PET Derived Quantitative Parameters for Patterns of Failure in Both p16+ and p16– High Risk Head and Neck Cancer
por: Cao, Yue, et al.
Publicado: (2019) -
Correlations Between DCE MRI and Histopathological Parameters in Head and Neck Squamous Cell Carcinoma()
por: Surov, Alexey, et al.
Publicado: (2016) -
The Use of Dynamic Tracer Concentration in Veins for Quantitative DCE-MRI Kinetic Analysis in Head and Neck
por: Yuan, Jing, et al.
Publicado: (2013)