Cargando…

Different Phenotypes of the Two Chinese Probands with the Same c.889G>A (p.C162Y) Mutation in COCH Gene Verify Different Mechanisms Underlying Autosomal Dominant Nonsyndromic Deafness 9

OBJECTIVES: By analyzing the different phenotypes of two Chinese DFNA9 families with the same mutation located in the intervening region between the LCCL and vWFA domains of cochlin and testing the functional changes in the mutant cochlin, we investigated the different pathogeneses for mutations in...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Qi, Fei, Peipei, Gu, Hongbo, Zhang, Yanmei, Ke, Xiaomei, Liu, Yuhe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243127/
https://www.ncbi.nlm.nih.gov/pubmed/28099493
http://dx.doi.org/10.1371/journal.pone.0170011
_version_ 1782496464395567104
author Wang, Qi
Fei, Peipei
Gu, Hongbo
Zhang, Yanmei
Ke, Xiaomei
Liu, Yuhe
author_facet Wang, Qi
Fei, Peipei
Gu, Hongbo
Zhang, Yanmei
Ke, Xiaomei
Liu, Yuhe
author_sort Wang, Qi
collection PubMed
description OBJECTIVES: By analyzing the different phenotypes of two Chinese DFNA9 families with the same mutation located in the intervening region between the LCCL and vWFA domains of cochlin and testing the functional changes in the mutant cochlin, we investigated the different pathogeneses for mutations in LCCL and vWFA domains. METHODS: Targeted next-generation sequencing for deafness-related genes was used to identify the mutation in the proband in family #208. The probands of family #208 and family #32 with the same p.C162Y mutation were followed for more than 3 years to evaluate the progression of hearing loss and vestibular dysfunction using pure-tone audiometry, caloric testing, electrocochleogram, vestibular-evoked myogenic potential, and video head-impulse test. The disruption of normal cleavage to produce secreted LCCL domain fragments and the tendency to form aggregations of mutant cochlins were tested by in vitro cell experiments. RESULTS: The two families showed different clinical symptoms. Family #32 was identified as having early-onset, progressive sensorineural hearing loss, similar to the symptoms in DFNA9 patients with cochlin mutations in the vWFA domain. The proband of family #208 endured late-onset recurrent paroxysmal vertigo attacks and progressively deteriorating hearing, similar to symptoms in those with cochlin mutations in the LCCL domain. We therefore suggest that the disrupted cleavage of the LCCL domain fragment is likely to cause vestibular dysfunction, and aggregation of mutant cochlin caused by mutations in the vWFA domain is responsible for early-onset hearing loss. The p.C162Y mutation causes either disruption of LCCL domain fragment cleavage or aggregation of mutant cochlin, resulting in the different phenotypes in the two families. CONCLUSION: This study demonstrates that DFNA9 families with the same genotype may have significantly different phenotypes. The mutation site in cochlin is related to the pathological mechanism underlying the different phenotypes.
format Online
Article
Text
id pubmed-5243127
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-52431272017-02-06 Different Phenotypes of the Two Chinese Probands with the Same c.889G>A (p.C162Y) Mutation in COCH Gene Verify Different Mechanisms Underlying Autosomal Dominant Nonsyndromic Deafness 9 Wang, Qi Fei, Peipei Gu, Hongbo Zhang, Yanmei Ke, Xiaomei Liu, Yuhe PLoS One Research Article OBJECTIVES: By analyzing the different phenotypes of two Chinese DFNA9 families with the same mutation located in the intervening region between the LCCL and vWFA domains of cochlin and testing the functional changes in the mutant cochlin, we investigated the different pathogeneses for mutations in LCCL and vWFA domains. METHODS: Targeted next-generation sequencing for deafness-related genes was used to identify the mutation in the proband in family #208. The probands of family #208 and family #32 with the same p.C162Y mutation were followed for more than 3 years to evaluate the progression of hearing loss and vestibular dysfunction using pure-tone audiometry, caloric testing, electrocochleogram, vestibular-evoked myogenic potential, and video head-impulse test. The disruption of normal cleavage to produce secreted LCCL domain fragments and the tendency to form aggregations of mutant cochlins were tested by in vitro cell experiments. RESULTS: The two families showed different clinical symptoms. Family #32 was identified as having early-onset, progressive sensorineural hearing loss, similar to the symptoms in DFNA9 patients with cochlin mutations in the vWFA domain. The proband of family #208 endured late-onset recurrent paroxysmal vertigo attacks and progressively deteriorating hearing, similar to symptoms in those with cochlin mutations in the LCCL domain. We therefore suggest that the disrupted cleavage of the LCCL domain fragment is likely to cause vestibular dysfunction, and aggregation of mutant cochlin caused by mutations in the vWFA domain is responsible for early-onset hearing loss. The p.C162Y mutation causes either disruption of LCCL domain fragment cleavage or aggregation of mutant cochlin, resulting in the different phenotypes in the two families. CONCLUSION: This study demonstrates that DFNA9 families with the same genotype may have significantly different phenotypes. The mutation site in cochlin is related to the pathological mechanism underlying the different phenotypes. Public Library of Science 2017-01-18 /pmc/articles/PMC5243127/ /pubmed/28099493 http://dx.doi.org/10.1371/journal.pone.0170011 Text en © 2017 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Wang, Qi
Fei, Peipei
Gu, Hongbo
Zhang, Yanmei
Ke, Xiaomei
Liu, Yuhe
Different Phenotypes of the Two Chinese Probands with the Same c.889G>A (p.C162Y) Mutation in COCH Gene Verify Different Mechanisms Underlying Autosomal Dominant Nonsyndromic Deafness 9
title Different Phenotypes of the Two Chinese Probands with the Same c.889G>A (p.C162Y) Mutation in COCH Gene Verify Different Mechanisms Underlying Autosomal Dominant Nonsyndromic Deafness 9
title_full Different Phenotypes of the Two Chinese Probands with the Same c.889G>A (p.C162Y) Mutation in COCH Gene Verify Different Mechanisms Underlying Autosomal Dominant Nonsyndromic Deafness 9
title_fullStr Different Phenotypes of the Two Chinese Probands with the Same c.889G>A (p.C162Y) Mutation in COCH Gene Verify Different Mechanisms Underlying Autosomal Dominant Nonsyndromic Deafness 9
title_full_unstemmed Different Phenotypes of the Two Chinese Probands with the Same c.889G>A (p.C162Y) Mutation in COCH Gene Verify Different Mechanisms Underlying Autosomal Dominant Nonsyndromic Deafness 9
title_short Different Phenotypes of the Two Chinese Probands with the Same c.889G>A (p.C162Y) Mutation in COCH Gene Verify Different Mechanisms Underlying Autosomal Dominant Nonsyndromic Deafness 9
title_sort different phenotypes of the two chinese probands with the same c.889g>a (p.c162y) mutation in coch gene verify different mechanisms underlying autosomal dominant nonsyndromic deafness 9
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243127/
https://www.ncbi.nlm.nih.gov/pubmed/28099493
http://dx.doi.org/10.1371/journal.pone.0170011
work_keys_str_mv AT wangqi differentphenotypesofthetwochineseprobandswiththesamec889gapc162ymutationincochgeneverifydifferentmechanismsunderlyingautosomaldominantnonsyndromicdeafness9
AT feipeipei differentphenotypesofthetwochineseprobandswiththesamec889gapc162ymutationincochgeneverifydifferentmechanismsunderlyingautosomaldominantnonsyndromicdeafness9
AT guhongbo differentphenotypesofthetwochineseprobandswiththesamec889gapc162ymutationincochgeneverifydifferentmechanismsunderlyingautosomaldominantnonsyndromicdeafness9
AT zhangyanmei differentphenotypesofthetwochineseprobandswiththesamec889gapc162ymutationincochgeneverifydifferentmechanismsunderlyingautosomaldominantnonsyndromicdeafness9
AT kexiaomei differentphenotypesofthetwochineseprobandswiththesamec889gapc162ymutationincochgeneverifydifferentmechanismsunderlyingautosomaldominantnonsyndromicdeafness9
AT liuyuhe differentphenotypesofthetwochineseprobandswiththesamec889gapc162ymutationincochgeneverifydifferentmechanismsunderlyingautosomaldominantnonsyndromicdeafness9