Cargando…
Significance of MDR1 and multiple drug resistance in refractory human epileptic brain
BACKGROUND: The multiple drug resistance protein (MDR1/P-glycoprotein) is overexpressed in glia and blood-brain barrier (BBB) endothelium in drug refractory human epileptic tissue. Since various antiepileptic drugs (AEDs) can act as substrates for MDR1, the enhanced expression/function of this prote...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC524356/ https://www.ncbi.nlm.nih.gov/pubmed/15473912 http://dx.doi.org/10.1186/1741-7015-2-37 |
_version_ | 1782121894484377600 |
---|---|
author | Marchi, Nicola Hallene, Kerri L Kight, Kelly M Cucullo, Luca Moddel, Gabriel Bingaman, William Dini, Gabriele Vezzani, Annamaria Janigro, Damir |
author_facet | Marchi, Nicola Hallene, Kerri L Kight, Kelly M Cucullo, Luca Moddel, Gabriel Bingaman, William Dini, Gabriele Vezzani, Annamaria Janigro, Damir |
author_sort | Marchi, Nicola |
collection | PubMed |
description | BACKGROUND: The multiple drug resistance protein (MDR1/P-glycoprotein) is overexpressed in glia and blood-brain barrier (BBB) endothelium in drug refractory human epileptic tissue. Since various antiepileptic drugs (AEDs) can act as substrates for MDR1, the enhanced expression/function of this protein may increase their active extrusion from the brain, resulting in decreased responsiveness to AEDs. METHODS: Human drug resistant epileptic brain tissues were collected after surgical resection. Astrocyte cell cultures were established from these tissues, and commercially available normal human astrocytes were used as controls. Uptake of fluorescent doxorubicin and radioactive-labeled Phenytoin was measured in the two cell populations, and the effect of MDR1 blockers was evaluated. Frozen human epileptic brain tissue slices were double immunostained to locate MDR1 in neurons and glia. Other slices were exposed to toxic concentrations of Phenytoin to study cell viability in the presence or absence of a specific MDR1 blocker. RESULTS: MDR1 was overexpressed in blood vessels, astrocytes and neurons in human epileptic drug-resistant brain. In addition, MDR1-mediated cellular drug extrusion was increased in human 'epileptic' astrocytes compared to 'normal' ones. Concomitantly, cell viability in the presence of cytotoxic compounds was increased. CONCLUSIONS: Overexpression of MDR1 in different cell types in drug-resistant epileptic human brain leads to functional alterations, not all of which are linked to drug pharmacokinetics. In particular, the modulation of glioneuronal MDR1 function in epileptic brain in the presence of toxic concentrations of xenobiotics may constitute a novel cytoprotective mechanism. |
format | Text |
id | pubmed-524356 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2004 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-5243562004-10-29 Significance of MDR1 and multiple drug resistance in refractory human epileptic brain Marchi, Nicola Hallene, Kerri L Kight, Kelly M Cucullo, Luca Moddel, Gabriel Bingaman, William Dini, Gabriele Vezzani, Annamaria Janigro, Damir BMC Med Research Article BACKGROUND: The multiple drug resistance protein (MDR1/P-glycoprotein) is overexpressed in glia and blood-brain barrier (BBB) endothelium in drug refractory human epileptic tissue. Since various antiepileptic drugs (AEDs) can act as substrates for MDR1, the enhanced expression/function of this protein may increase their active extrusion from the brain, resulting in decreased responsiveness to AEDs. METHODS: Human drug resistant epileptic brain tissues were collected after surgical resection. Astrocyte cell cultures were established from these tissues, and commercially available normal human astrocytes were used as controls. Uptake of fluorescent doxorubicin and radioactive-labeled Phenytoin was measured in the two cell populations, and the effect of MDR1 blockers was evaluated. Frozen human epileptic brain tissue slices were double immunostained to locate MDR1 in neurons and glia. Other slices were exposed to toxic concentrations of Phenytoin to study cell viability in the presence or absence of a specific MDR1 blocker. RESULTS: MDR1 was overexpressed in blood vessels, astrocytes and neurons in human epileptic drug-resistant brain. In addition, MDR1-mediated cellular drug extrusion was increased in human 'epileptic' astrocytes compared to 'normal' ones. Concomitantly, cell viability in the presence of cytotoxic compounds was increased. CONCLUSIONS: Overexpression of MDR1 in different cell types in drug-resistant epileptic human brain leads to functional alterations, not all of which are linked to drug pharmacokinetics. In particular, the modulation of glioneuronal MDR1 function in epileptic brain in the presence of toxic concentrations of xenobiotics may constitute a novel cytoprotective mechanism. BioMed Central 2004-10-09 /pmc/articles/PMC524356/ /pubmed/15473912 http://dx.doi.org/10.1186/1741-7015-2-37 Text en Copyright © 2004 Marchi et al; licensee BioMed Central Ltd. |
spellingShingle | Research Article Marchi, Nicola Hallene, Kerri L Kight, Kelly M Cucullo, Luca Moddel, Gabriel Bingaman, William Dini, Gabriele Vezzani, Annamaria Janigro, Damir Significance of MDR1 and multiple drug resistance in refractory human epileptic brain |
title | Significance of MDR1 and multiple drug resistance in refractory human epileptic brain |
title_full | Significance of MDR1 and multiple drug resistance in refractory human epileptic brain |
title_fullStr | Significance of MDR1 and multiple drug resistance in refractory human epileptic brain |
title_full_unstemmed | Significance of MDR1 and multiple drug resistance in refractory human epileptic brain |
title_short | Significance of MDR1 and multiple drug resistance in refractory human epileptic brain |
title_sort | significance of mdr1 and multiple drug resistance in refractory human epileptic brain |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC524356/ https://www.ncbi.nlm.nih.gov/pubmed/15473912 http://dx.doi.org/10.1186/1741-7015-2-37 |
work_keys_str_mv | AT marchinicola significanceofmdr1andmultipledrugresistanceinrefractoryhumanepilepticbrain AT hallenekerril significanceofmdr1andmultipledrugresistanceinrefractoryhumanepilepticbrain AT kightkellym significanceofmdr1andmultipledrugresistanceinrefractoryhumanepilepticbrain AT cuculloluca significanceofmdr1andmultipledrugresistanceinrefractoryhumanepilepticbrain AT moddelgabriel significanceofmdr1andmultipledrugresistanceinrefractoryhumanepilepticbrain AT bingamanwilliam significanceofmdr1andmultipledrugresistanceinrefractoryhumanepilepticbrain AT dinigabriele significanceofmdr1andmultipledrugresistanceinrefractoryhumanepilepticbrain AT vezzaniannamaria significanceofmdr1andmultipledrugresistanceinrefractoryhumanepilepticbrain AT janigrodamir significanceofmdr1andmultipledrugresistanceinrefractoryhumanepilepticbrain |