Cargando…

Variation in foraging success among predators and its implications for population dynamics

The effects of the expected predation rate on population dynamics have been studied intensively, but little is known about the effects of predation rate variability (i.e., predator individuals having variable foraging success) on population dynamics. In this study, variation in foraging success amon...

Descripción completa

Detalles Bibliográficos
Autor principal: Okuyama, Toshinori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243783/
https://www.ncbi.nlm.nih.gov/pubmed/28116049
http://dx.doi.org/10.1002/ece3.2633
Descripción
Sumario:The effects of the expected predation rate on population dynamics have been studied intensively, but little is known about the effects of predation rate variability (i.e., predator individuals having variable foraging success) on population dynamics. In this study, variation in foraging success among predators was quantified by observing the predation of the wolf spider Pardosa pseudoannulata on the cricket Gryllus bimaculatus in the laboratory. A population model was then developed, and the effect of foraging variability on predator–prey dynamics was examined by incorporating levels of variation comparable to those quantified in the experiment. The variability in the foraging success among spiders was greater than would be expected by chance (i.e., the random allocation of prey to predators). The foraging variation was density‐dependent; it became higher as the predator density increased. A population model that incorporates foraging variation shows that the variation influences population dynamics by affecting the numerical response of predators. In particular, the variation induces negative density‐dependent effects among predators and stabilizes predator–prey dynamics.