Cargando…

Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces

In this article, we apply common fixed point results in incomplete metric spaces to examine the existence of a unique common solution for the following systems of Urysohn integral equations and Volterra-Hammerstein integral equations, respectively: [Formula: see text] where [Formula: see text] ; [Fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Bahadur Zada, Mian, Sarwar, Muhammad, Radenović, Stojan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243923/
https://www.ncbi.nlm.nih.gov/pubmed/28163547
http://dx.doi.org/10.1186/s13660-016-1286-7
Descripción
Sumario:In this article, we apply common fixed point results in incomplete metric spaces to examine the existence of a unique common solution for the following systems of Urysohn integral equations and Volterra-Hammerstein integral equations, respectively: [Formula: see text] where [Formula: see text] ; [Formula: see text] and [Formula: see text] , [Formula: see text] and [Formula: see text] where [Formula: see text] , [Formula: see text] , u, [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] , [Formula: see text] , are real-valued measurable functions both in s and r on [Formula: see text] .