Cargando…
Existence of unique common solution to the system of non-linear integral equations via fixed point results in incomplete metric spaces
In this article, we apply common fixed point results in incomplete metric spaces to examine the existence of a unique common solution for the following systems of Urysohn integral equations and Volterra-Hammerstein integral equations, respectively: [Formula: see text] where [Formula: see text] ; [Fo...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243923/ https://www.ncbi.nlm.nih.gov/pubmed/28163547 http://dx.doi.org/10.1186/s13660-016-1286-7 |
Sumario: | In this article, we apply common fixed point results in incomplete metric spaces to examine the existence of a unique common solution for the following systems of Urysohn integral equations and Volterra-Hammerstein integral equations, respectively: [Formula: see text] where [Formula: see text] ; [Formula: see text] and [Formula: see text] , [Formula: see text] and [Formula: see text] where [Formula: see text] , [Formula: see text] , u, [Formula: see text] , [Formula: see text] , [Formula: see text] , [Formula: see text] and [Formula: see text] , [Formula: see text] , are real-valued measurable functions both in s and r on [Formula: see text] . |
---|