Cargando…

Optimal partial regularity of very weak solutions to nonhomogeneous A-harmonic systems

We study partial regularity of very weak solutions to some nonhomogeneous A-harmonic systems. To obtain the reverse Hölder inequality of the gradient of a very weak solution, we construct a suitable test function by Hodge decomposition. With the aid of Gehring’s lemma, we prove that these very weak...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Qing, Chen, Shuhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5243924/
https://www.ncbi.nlm.nih.gov/pubmed/28163548
http://dx.doi.org/10.1186/s13660-017-1297-z
Descripción
Sumario:We study partial regularity of very weak solutions to some nonhomogeneous A-harmonic systems. To obtain the reverse Hölder inequality of the gradient of a very weak solution, we construct a suitable test function by Hodge decomposition. With the aid of Gehring’s lemma, we prove that these very weak solutions are weak solutions. Further, we show that these solutions are in fact optimal Hölder continuity based on A-harmonic approximation technique.