Cargando…

Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose

We report an ultra-thin electronic decal that can simultaneously collect, transmit and interrogate a bio-fluid. The described technology effectively integrates a thin-film organic electrochemical transistor (sensing component) with an ultrathin microbial nanocellulose wicking membrane (sample handli...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuen, Jonathan D., Walper, Scott A., Melde, Brian J., Daniele, Michael A., Stenger, David A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5244378/
https://www.ncbi.nlm.nih.gov/pubmed/28102316
http://dx.doi.org/10.1038/srep40867
_version_ 1782496688068362240
author Yuen, Jonathan D.
Walper, Scott A.
Melde, Brian J.
Daniele, Michael A.
Stenger, David A.
author_facet Yuen, Jonathan D.
Walper, Scott A.
Melde, Brian J.
Daniele, Michael A.
Stenger, David A.
author_sort Yuen, Jonathan D.
collection PubMed
description We report an ultra-thin electronic decal that can simultaneously collect, transmit and interrogate a bio-fluid. The described technology effectively integrates a thin-film organic electrochemical transistor (sensing component) with an ultrathin microbial nanocellulose wicking membrane (sample handling component). As far as we are aware, OECTs have not been integrated in thin, permeable membrane substrates for epidermal electronics. The design of the biocompatible decal allows for the physical isolation of the electronics from the human body while enabling efficient bio-fluid delivery to the transistor via vertical wicking. High currents and ON-OFF ratios were achieved, with sensitivity as low as 1 mg·L(−1).
format Online
Article
Text
id pubmed-5244378
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-52443782017-01-23 Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose Yuen, Jonathan D. Walper, Scott A. Melde, Brian J. Daniele, Michael A. Stenger, David A. Sci Rep Article We report an ultra-thin electronic decal that can simultaneously collect, transmit and interrogate a bio-fluid. The described technology effectively integrates a thin-film organic electrochemical transistor (sensing component) with an ultrathin microbial nanocellulose wicking membrane (sample handling component). As far as we are aware, OECTs have not been integrated in thin, permeable membrane substrates for epidermal electronics. The design of the biocompatible decal allows for the physical isolation of the electronics from the human body while enabling efficient bio-fluid delivery to the transistor via vertical wicking. High currents and ON-OFF ratios were achieved, with sensitivity as low as 1 mg·L(−1). Nature Publishing Group 2017-01-19 /pmc/articles/PMC5244378/ /pubmed/28102316 http://dx.doi.org/10.1038/srep40867 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Yuen, Jonathan D.
Walper, Scott A.
Melde, Brian J.
Daniele, Michael A.
Stenger, David A.
Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose
title Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose
title_full Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose
title_fullStr Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose
title_full_unstemmed Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose
title_short Electrolyte-Sensing Transistor Decals Enabled by Ultrathin Microbial Nanocellulose
title_sort electrolyte-sensing transistor decals enabled by ultrathin microbial nanocellulose
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5244378/
https://www.ncbi.nlm.nih.gov/pubmed/28102316
http://dx.doi.org/10.1038/srep40867
work_keys_str_mv AT yuenjonathand electrolytesensingtransistordecalsenabledbyultrathinmicrobialnanocellulose
AT walperscotta electrolytesensingtransistordecalsenabledbyultrathinmicrobialnanocellulose
AT meldebrianj electrolytesensingtransistordecalsenabledbyultrathinmicrobialnanocellulose
AT danielemichaela electrolytesensingtransistordecalsenabledbyultrathinmicrobialnanocellulose
AT stengerdavida electrolytesensingtransistordecalsenabledbyultrathinmicrobialnanocellulose