Cargando…
Variational inference for rare variant detection in deep, heterogeneous next-generation sequencing data
BACKGROUND: The detection of rare single nucleotide variants (SNVs) is important for understanding genetic heterogeneity using next-generation sequencing (NGS) data. Various computational algorithms have been proposed to detect variants at the single nucleotide level in mixed samples. Yet, the noise...
Autores principales: | Zhang, Fan, Flaherty, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5244592/ https://www.ncbi.nlm.nih.gov/pubmed/28103803 http://dx.doi.org/10.1186/s12859-016-1451-5 |
Ejemplares similares
-
RVD2: an ultra-sensitive variant detection model for low-depth heterogeneous next-generation sequencing data
por: He, Yuting, et al.
Publicado: (2015) -
DeviCNV: detection and visualization of exon-level copy number variants in targeted next-generation sequencing data
por: Kang, Yeeok, et al.
Publicado: (2018) -
Approaches to the detection of recessive effects using next generation sequencing data from outbred populations
por: Curtis, David
Publicado: (2013) -
A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data
por: Kim, Young Jin, et al.
Publicado: (2015) -
Variant mapping and mutation discovery in inbred mice using next-generation sequencing
por: Gallego-Llamas, Jabier, et al.
Publicado: (2015)