Cargando…

Erythropoietin attenuates hyperoxia-induced lung injury by upregulating epidermal growth factor-like domain 7 in newborn rats

The aim of the present study was to observe the effects of recombinant human erythropoietin (rhEPO) on the expression of epidermal growth factor-like domain 7 (EGFL7) and cell apoptosis in lung tissue following hyperoxic lung injury in newborn rats. The 96 Sprague-Dawley newborn rats were randomly d...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Huanjin, He, Jiayu, Chen, Hongwu, Chen, Jinwen, Qian, Xinhua, Huang, Weimin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5244802/
https://www.ncbi.nlm.nih.gov/pubmed/28123704
http://dx.doi.org/10.3892/br.2016.820
Descripción
Sumario:The aim of the present study was to observe the effects of recombinant human erythropoietin (rhEPO) on the expression of epidermal growth factor-like domain 7 (EGFL7) and cell apoptosis in lung tissue following hyperoxic lung injury in newborn rats. The 96 Sprague-Dawley newborn rats were randomly divided into 4 groups (n=24) as follows: Room air-exposed control group, room air-exposed rhEPO-treated group, hyperoxia-exposed group and the hyperoxia-exposed rhEPO-treated group. Pups (n=8) from each group were sacrificed on postnatal days 3, 7 and 14. The pulmonary morphometric and microvessel density changes were observed. In addition, the mRNA and protein expression levels of EGFL7, B-cell lymphoma 2 (Bcl-2) and Bcl-2-like protein 4 (Bax) in lung tissue samples were measured. The rats in the hyperoxia-exposed group exhibited alveolar and pulmonary vascular dysplasia, as well as low mRNA and protein expression levels of EGFL7 and Bcl-2, in addition to high level of Bax in the lung tissue samples when compared with the room air-exposed control group (P<0.05). However, in the hyperoxia-exposed rhEPO-treated group the lung histopathology was improved, and the protein and mRNA expression levels of EGFL7 and Bcl-2 were increased compared with the hyperoxia-exposed group (P<0.05). Furthermore, the expression level of Bax was lower than that of the hyperoxia-exposed group (P<0.05). The present study demonstrated that rhEPO promotes alveolar development and increases pulmonary vascular density by upregulating the expression level of EGFL7 in hyperoxia-induced lung injury of newborn rats.