Cargando…

Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice

BACKGROUND: In animal pathogenic bacteria, horizontal gene transfer events (HGT) have been frequently observed in genomic regions that encode functions involved in biosynthesis of the outer membrane located lipopolysaccharide (LPS). As a result, different strains of the same pathogen can have substa...

Descripción completa

Detalles Bibliográficos
Autores principales: Patil, Prabhu B, Sonti, Ramesh V
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC524487/
https://www.ncbi.nlm.nih.gov/pubmed/15473911
http://dx.doi.org/10.1186/1471-2180-4-40
_version_ 1782121903029223424
author Patil, Prabhu B
Sonti, Ramesh V
author_facet Patil, Prabhu B
Sonti, Ramesh V
author_sort Patil, Prabhu B
collection PubMed
description BACKGROUND: In animal pathogenic bacteria, horizontal gene transfer events (HGT) have been frequently observed in genomic regions that encode functions involved in biosynthesis of the outer membrane located lipopolysaccharide (LPS). As a result, different strains of the same pathogen can have substantially different lps biosynthetic gene clusters. Since LPS is highly antigenic, the variation at lps loci is attributed to be of advantage in evading the host immune system. Although LPS has been suggested as a potentiator of plant defense responses, interstrain variation at lps biosynthetic gene clusters has not been reported for any plant pathogenic bacterium. RESULTS: We report here the complete sequence of a 12.2 kb virulence locus of Xanthomonas oryzae pv. oryzae (Xoo) encoding six genes whose products are homologous to functions involved in LPS biosynthesis and transport. All six open reading frames (ORFs) have atypical G+C content and altered codon usage, which are the hallmarks of genomic islands that are acquired by horizontal gene transfer. The lps locus is flanked by highly conserved genes, metB and etfA, respectively encoding cystathionine gamma lyase and electron transport flavoprotein. Interestingly, two different sets of lps genes are present at this locus in the plant pathogens, Xanthomonas campestris pv. campestris (Xcc) and Xanthomonas axonopodis pv. citri (Xac). The genomic island is present in a number of Xoo strains from India and other Asian countries but is not present in two strains, one from India (BXO8) and another from Nepal (Nepal624) as well as the closely related rice pathogen, Xanthomonas oryzae pv. oryzicola (Xoor). TAIL-PCR analysis indicates that sequences related to Xac are present at the lps locus in both BXO8 and Nepal624. The Xoor strain has a hybrid lps gene cluster, with sequences at the metB and etfA ends, being most closely related to sequences from Xac and the tomato pathogen, Pseudomonas syringae pv. tomato respectively. CONCLUSION: This is the first report of hypervariation at an lps locus between different strains of a plant pathogenic bacterium. Our results indicate that multiple HGT events have occurred at this locus in the xanthomonad group of plant pathogens.
format Text
id pubmed-524487
institution National Center for Biotechnology Information
language English
publishDate 2004
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-5244872004-10-31 Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice Patil, Prabhu B Sonti, Ramesh V BMC Microbiol Research Article BACKGROUND: In animal pathogenic bacteria, horizontal gene transfer events (HGT) have been frequently observed in genomic regions that encode functions involved in biosynthesis of the outer membrane located lipopolysaccharide (LPS). As a result, different strains of the same pathogen can have substantially different lps biosynthetic gene clusters. Since LPS is highly antigenic, the variation at lps loci is attributed to be of advantage in evading the host immune system. Although LPS has been suggested as a potentiator of plant defense responses, interstrain variation at lps biosynthetic gene clusters has not been reported for any plant pathogenic bacterium. RESULTS: We report here the complete sequence of a 12.2 kb virulence locus of Xanthomonas oryzae pv. oryzae (Xoo) encoding six genes whose products are homologous to functions involved in LPS biosynthesis and transport. All six open reading frames (ORFs) have atypical G+C content and altered codon usage, which are the hallmarks of genomic islands that are acquired by horizontal gene transfer. The lps locus is flanked by highly conserved genes, metB and etfA, respectively encoding cystathionine gamma lyase and electron transport flavoprotein. Interestingly, two different sets of lps genes are present at this locus in the plant pathogens, Xanthomonas campestris pv. campestris (Xcc) and Xanthomonas axonopodis pv. citri (Xac). The genomic island is present in a number of Xoo strains from India and other Asian countries but is not present in two strains, one from India (BXO8) and another from Nepal (Nepal624) as well as the closely related rice pathogen, Xanthomonas oryzae pv. oryzicola (Xoor). TAIL-PCR analysis indicates that sequences related to Xac are present at the lps locus in both BXO8 and Nepal624. The Xoor strain has a hybrid lps gene cluster, with sequences at the metB and etfA ends, being most closely related to sequences from Xac and the tomato pathogen, Pseudomonas syringae pv. tomato respectively. CONCLUSION: This is the first report of hypervariation at an lps locus between different strains of a plant pathogenic bacterium. Our results indicate that multiple HGT events have occurred at this locus in the xanthomonad group of plant pathogens. BioMed Central 2004-10-09 /pmc/articles/PMC524487/ /pubmed/15473911 http://dx.doi.org/10.1186/1471-2180-4-40 Text en Copyright © 2004 Patil and Sonti; licensee BioMed Central Ltd.
spellingShingle Research Article
Patil, Prabhu B
Sonti, Ramesh V
Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice
title Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice
title_full Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice
title_fullStr Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice
title_full_unstemmed Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice
title_short Variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice
title_sort variation suggestive of horizontal gene transfer at a lipopolysaccharide (lps) biosynthetic locus in xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen of rice
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC524487/
https://www.ncbi.nlm.nih.gov/pubmed/15473911
http://dx.doi.org/10.1186/1471-2180-4-40
work_keys_str_mv AT patilprabhub variationsuggestiveofhorizontalgenetransferatalipopolysaccharidelpsbiosyntheticlocusinxanthomonasoryzaepvoryzaethebacterialleafblightpathogenofrice
AT sontirameshv variationsuggestiveofhorizontalgenetransferatalipopolysaccharidelpsbiosyntheticlocusinxanthomonasoryzaepvoryzaethebacterialleafblightpathogenofrice