Cargando…
Overdispersed logistic regression for SAGE: Modelling multiple groups and covariates
BACKGROUND: Two major identifiable sources of variation in data derived from the Serial Analysis of Gene Expression (SAGE) are within-library sampling variability and between-library heterogeneity within a group. Most published methods for identifying differential expression focus on just the sampli...
Autores principales: | Baggerly, Keith A, Deng, Li, Morris, Jeffrey S, Aldaz, C Marcelo |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC524524/ https://www.ncbi.nlm.nih.gov/pubmed/15469612 http://dx.doi.org/10.1186/1471-2105-5-144 |
Ejemplares similares
-
Identifying differential expression in multiple SAGE libraries: an overdispersed log-linear model approach
por: Lu, Jun, et al.
Publicado: (2005) -
Logistic regression with missing values in the covariates
por: Vach, Werner
Publicado: (1994) -
Negative Binomial Regression: Understanding and Modeling Overdispersed Count Data
por: Hilbe, Joseph M
Publicado: (2011) -
Logistic regression vs. predictive mean matching for imputing binary covariates
por: Austin, Peter C, et al.
Publicado: (2023) -
Dirichlet negative multinomial regression for overdispersed correlated count
data
por: Farewell, Daniel M., et al.
Publicado: (2013)