Cargando…

Two Novel Vesicle-Inducing Proteins in Plastids 1 Genes Cloned and Characterized in Triticum urartu

Vesicle-inducing protein in plastids 1 (Vipp1) is thought to play an important role both in thylakoid biogenesis and chloroplast envelope maintenance during stress. Vipp1 is conserved in photosynthetic organisms and forms a high homo-oligomer complex structure that may help sustain the membrane inte...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Fei, Chen, Bo, Jiao, Juan, Jia, Lijia, Liu, Cuimin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5245824/
https://www.ncbi.nlm.nih.gov/pubmed/28103282
http://dx.doi.org/10.1371/journal.pone.0170439
Descripción
Sumario:Vesicle-inducing protein in plastids 1 (Vipp1) is thought to play an important role both in thylakoid biogenesis and chloroplast envelope maintenance during stress. Vipp1 is conserved in photosynthetic organisms and forms a high homo-oligomer complex structure that may help sustain the membrane integrity of chloroplasts. This study cloned two novel VIPP1 genes from Triticum urartu and named them TuVipp1 and TuVipp2. Both proteins shared high identity with the homologous proteins AtVipp1 and CrVipp1. TuVipp1 and TuVipp2 were expressed in various organs of common wheat, and both genes were induced by light and various stress treatments. Purified TuVipp1 and TuVipp2 proteins showed secondary and advanced structures similar to those of the homologous proteins. Similar to AtVipp1, TuVipp1 is a chloroplast target protein. Additionally, TuVipp1 was able to rescue the phenotypes of pale leaves, lethality, and disordered chloroplast structures of AtVipp1 (-/-) mutant lines. Collectively, our data demonstrate that TuVipp1 and TuVipp2 are functional proteins in chloroplasts in wheat and may be critical for maintaining the chloroplast envelope under stress and membrane biogenesis upon photosynthesis.