Cargando…

Enhanced Forward Scattering of Ellipsoidal Dielectric Nanoparticles

Dielectric nanoparticles can demonstrate a strong forward scattering at visible and near-infrared wavelengths due to the interaction of optically induced electric and magnetic dipolar resonances. For a spherical nanoparticle, the first Kerker’s condition within dipole approximation can be realized,...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhonghua, An, Ning, Shen, Fei, Zhou, Hongping, Sun, Yongxuan, Jiang, Zhaoneng, Han, Yanhua, Li, Yan, Guo, Zhongyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247385/
https://www.ncbi.nlm.nih.gov/pubmed/28105606
http://dx.doi.org/10.1186/s11671-016-1794-x
Descripción
Sumario:Dielectric nanoparticles can demonstrate a strong forward scattering at visible and near-infrared wavelengths due to the interaction of optically induced electric and magnetic dipolar resonances. For a spherical nanoparticle, the first Kerker’s condition within dipole approximation can be realized, where backward scattering can reach zero. However, for this type of dielectric sphere, maximum forward scattering without backward scattering cannot be realized by modulating the refractive index and particle size of this nanoparticle. In this paper, we have demonstrated that a larger directional forward scattering than the traditional spherical nanoparticle can be obtained by using the ellipsoidal nanoparticle, due to the overlapping electric and magnetic dipolar modes. For the oblate ellipsoid with a determined refractive index, there is an optimum shape for generating the suppressed backward scattering along with the enhanced forward scattering at the resonant wavelength, where the electric and magnetic dipolar modes overlap with each other. For the prolate ellipsoid, there also exist the overlapping electric and magnetic dipolar modes at the resonant wavelength of total scattering, which have much higher forward scattering than those for both oblate ellipsoid and sphere, due to the existence of the higher multipolar modes. Furthermore, we have also demonstrated the realization of the dimensional tailoring in order to make the strong forward scattering shift to the desired wavelength.