Cargando…

Tailoring the Mesoscopic TiO(2) Layer: Concomitant Parameters for Enabling High-Performance Perovskite Solar Cells

Architectural control over the mesoporous TiO(2) film, a common electron-transport layer for organic-inorganic hybrid perovskite solar cells, is conducted by employing sub-micron sized polystyrene beads as sacrificial template. Such tailored TiO(2) layer is shown to induce asymmetric enhancement of...

Descripción completa

Detalles Bibliográficos
Autores principales: Hwang, Taehyun, Lee, Sangheon, Kim, Jinhyun, Kim, Jaewon, Kim, Chunjoong, Shin, Byungha, Park, Byungwoo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247386/
https://www.ncbi.nlm.nih.gov/pubmed/28105607
http://dx.doi.org/10.1186/s11671-016-1809-7
_version_ 1782497079631806464
author Hwang, Taehyun
Lee, Sangheon
Kim, Jinhyun
Kim, Jaewon
Kim, Chunjoong
Shin, Byungha
Park, Byungwoo
author_facet Hwang, Taehyun
Lee, Sangheon
Kim, Jinhyun
Kim, Jaewon
Kim, Chunjoong
Shin, Byungha
Park, Byungwoo
author_sort Hwang, Taehyun
collection PubMed
description Architectural control over the mesoporous TiO(2) film, a common electron-transport layer for organic-inorganic hybrid perovskite solar cells, is conducted by employing sub-micron sized polystyrene beads as sacrificial template. Such tailored TiO(2) layer is shown to induce asymmetric enhancement of light absorption notably in the long-wavelength region with red-shifted absorption onset of perovskite, leading to ~20% increase of photocurrent and ~10% increase of power conversion efficiency. This enhancement is likely to be originated from the enlarged CH(3)NH(3)PbI(3)(Cl) grains residing in the sub-micron pores rather than from the effect of reduced perovskite-TiO(2) interfacial area, which is supported from optical bandgap change, haze transmission of incident light, and one-diode model parameters correlated with the internal surface area of microporous TiO(2) layers. With the templating strategy suggested, the necessity of proper hole-blocking method is discussed to prevent any direct contact of the large perovskite grains infiltrated into the intended pores of TiO(2) scaffold, further mitigating the interfacial recombination and leading to ~20% improvement in power conversion efficiency compared with the control device using conventional solution-processed hole blocking TiO(2). Thereby, the imperatives that originate from the structural engineering of the electron-transport layer are discussed to understand the governing elements for the improved device performance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s11671-016-1809-7) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-5247386
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-52473862017-02-02 Tailoring the Mesoscopic TiO(2) Layer: Concomitant Parameters for Enabling High-Performance Perovskite Solar Cells Hwang, Taehyun Lee, Sangheon Kim, Jinhyun Kim, Jaewon Kim, Chunjoong Shin, Byungha Park, Byungwoo Nanoscale Res Lett Nano Express Architectural control over the mesoporous TiO(2) film, a common electron-transport layer for organic-inorganic hybrid perovskite solar cells, is conducted by employing sub-micron sized polystyrene beads as sacrificial template. Such tailored TiO(2) layer is shown to induce asymmetric enhancement of light absorption notably in the long-wavelength region with red-shifted absorption onset of perovskite, leading to ~20% increase of photocurrent and ~10% increase of power conversion efficiency. This enhancement is likely to be originated from the enlarged CH(3)NH(3)PbI(3)(Cl) grains residing in the sub-micron pores rather than from the effect of reduced perovskite-TiO(2) interfacial area, which is supported from optical bandgap change, haze transmission of incident light, and one-diode model parameters correlated with the internal surface area of microporous TiO(2) layers. With the templating strategy suggested, the necessity of proper hole-blocking method is discussed to prevent any direct contact of the large perovskite grains infiltrated into the intended pores of TiO(2) scaffold, further mitigating the interfacial recombination and leading to ~20% improvement in power conversion efficiency compared with the control device using conventional solution-processed hole blocking TiO(2). Thereby, the imperatives that originate from the structural engineering of the electron-transport layer are discussed to understand the governing elements for the improved device performance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s11671-016-1809-7) contains supplementary material, which is available to authorized users. Springer US 2017-01-19 /pmc/articles/PMC5247386/ /pubmed/28105607 http://dx.doi.org/10.1186/s11671-016-1809-7 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Nano Express
Hwang, Taehyun
Lee, Sangheon
Kim, Jinhyun
Kim, Jaewon
Kim, Chunjoong
Shin, Byungha
Park, Byungwoo
Tailoring the Mesoscopic TiO(2) Layer: Concomitant Parameters for Enabling High-Performance Perovskite Solar Cells
title Tailoring the Mesoscopic TiO(2) Layer: Concomitant Parameters for Enabling High-Performance Perovskite Solar Cells
title_full Tailoring the Mesoscopic TiO(2) Layer: Concomitant Parameters for Enabling High-Performance Perovskite Solar Cells
title_fullStr Tailoring the Mesoscopic TiO(2) Layer: Concomitant Parameters for Enabling High-Performance Perovskite Solar Cells
title_full_unstemmed Tailoring the Mesoscopic TiO(2) Layer: Concomitant Parameters for Enabling High-Performance Perovskite Solar Cells
title_short Tailoring the Mesoscopic TiO(2) Layer: Concomitant Parameters for Enabling High-Performance Perovskite Solar Cells
title_sort tailoring the mesoscopic tio(2) layer: concomitant parameters for enabling high-performance perovskite solar cells
topic Nano Express
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247386/
https://www.ncbi.nlm.nih.gov/pubmed/28105607
http://dx.doi.org/10.1186/s11671-016-1809-7
work_keys_str_mv AT hwangtaehyun tailoringthemesoscopictio2layerconcomitantparametersforenablinghighperformanceperovskitesolarcells
AT leesangheon tailoringthemesoscopictio2layerconcomitantparametersforenablinghighperformanceperovskitesolarcells
AT kimjinhyun tailoringthemesoscopictio2layerconcomitantparametersforenablinghighperformanceperovskitesolarcells
AT kimjaewon tailoringthemesoscopictio2layerconcomitantparametersforenablinghighperformanceperovskitesolarcells
AT kimchunjoong tailoringthemesoscopictio2layerconcomitantparametersforenablinghighperformanceperovskitesolarcells
AT shinbyungha tailoringthemesoscopictio2layerconcomitantparametersforenablinghighperformanceperovskitesolarcells
AT parkbyungwoo tailoringthemesoscopictio2layerconcomitantparametersforenablinghighperformanceperovskitesolarcells