Cargando…
SEGMA: An Automatic SEGMentation Approach for Human Brain MRI Using Sliding Window and Random Forests
Quantitative volumes from brain magnetic resonance imaging (MRI) acquired across the life course may be useful for investigating long term effects of risk and resilience factors for brain development and healthy aging, and for understanding early life determinants of adult brain structure. Therefore...
Autores principales: | Serag, Ahmed, Wilkinson, Alastair G., Telford, Emma J., Pataky, Rozalia, Sparrow, Sarah A., Anblagan, Devasuda, Macnaught, Gillian, Semple, Scott I., Boardman, James P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247463/ https://www.ncbi.nlm.nih.gov/pubmed/28163680 http://dx.doi.org/10.3389/fninf.2017.00002 |
Ejemplares similares
-
Parcellation of the Healthy Neonatal Brain into 107 Regions Using Atlas Propagation through Intermediate Time Points in Childhood
por: Blesa, Manuel, et al.
Publicado: (2016) -
Association between preterm brain injury and exposure to chorioamnionitis during fetal life
por: Anblagan, Devasuda, et al.
Publicado: (2016) -
Tract shape modeling detects changes associated with preterm birth and neuroprotective treatment effects
por: Anblagan, Devasuda, et al.
Publicado: (2015) -
Diffusion MRI parameters of corpus callosum and corticospinal tract in neonates: Comparison between region-of-interest and whole tract averaged measurements
por: Sparrow, Sarah A., et al.
Publicado: (2018) -
Accurate Learning with Few Atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods
por: Serag, Ahmed, et al.
Publicado: (2016)