Cargando…

Thermal engineering of FAPbI(3) perovskite material via radiative thermal annealing and in situ XRD

Lead halide perovskites have emerged as successful optoelectronic materials with high photovoltaic power conversion efficiencies and low material cost. However, substantial challenges remain in the scalability, stability and fundamental understanding of the materials. Here we present the application...

Descripción completa

Detalles Bibliográficos
Autores principales: Pool, Vanessa L., Dou, Benjia, Van Campen, Douglas G., Klein-Stockert, Talysa R., Barnes, Frank S., Shaheen, Sean E., Ahmad, Md I., van Hest, Maikel F. A. M., Toney, Michael F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247577/
https://www.ncbi.nlm.nih.gov/pubmed/28094249
http://dx.doi.org/10.1038/ncomms14075
_version_ 1782497108985643008
author Pool, Vanessa L.
Dou, Benjia
Van Campen, Douglas G.
Klein-Stockert, Talysa R.
Barnes, Frank S.
Shaheen, Sean E.
Ahmad, Md I.
van Hest, Maikel F. A. M.
Toney, Michael F.
author_facet Pool, Vanessa L.
Dou, Benjia
Van Campen, Douglas G.
Klein-Stockert, Talysa R.
Barnes, Frank S.
Shaheen, Sean E.
Ahmad, Md I.
van Hest, Maikel F. A. M.
Toney, Michael F.
author_sort Pool, Vanessa L.
collection PubMed
description Lead halide perovskites have emerged as successful optoelectronic materials with high photovoltaic power conversion efficiencies and low material cost. However, substantial challenges remain in the scalability, stability and fundamental understanding of the materials. Here we present the application of radiative thermal annealing, an easily scalable processing method for synthesizing formamidinium lead iodide (FAPbI(3)) perovskite solar absorbers. Devices fabricated from films formed via radiative thermal annealing have equivalent efficiencies to those annealed using a conventional hotplate. By coupling results from in situ X-ray diffraction using a radiative thermal annealing system with device performances, we mapped the processing phase space of FAPbI(3) and corresponding device efficiencies. Our map of processing-structure-performance space suggests the commonly used FAPbI(3) annealing time, 10 min at 170 °C, can be significantly reduced to 40 s at 170 °C without affecting the photovoltaic performance. The Johnson-Mehl-Avrami model was used to determine the activation energy for decomposition of FAPbI(3) into PbI(2).
format Online
Article
Text
id pubmed-5247577
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-52475772017-02-08 Thermal engineering of FAPbI(3) perovskite material via radiative thermal annealing and in situ XRD Pool, Vanessa L. Dou, Benjia Van Campen, Douglas G. Klein-Stockert, Talysa R. Barnes, Frank S. Shaheen, Sean E. Ahmad, Md I. van Hest, Maikel F. A. M. Toney, Michael F. Nat Commun Article Lead halide perovskites have emerged as successful optoelectronic materials with high photovoltaic power conversion efficiencies and low material cost. However, substantial challenges remain in the scalability, stability and fundamental understanding of the materials. Here we present the application of radiative thermal annealing, an easily scalable processing method for synthesizing formamidinium lead iodide (FAPbI(3)) perovskite solar absorbers. Devices fabricated from films formed via radiative thermal annealing have equivalent efficiencies to those annealed using a conventional hotplate. By coupling results from in situ X-ray diffraction using a radiative thermal annealing system with device performances, we mapped the processing phase space of FAPbI(3) and corresponding device efficiencies. Our map of processing-structure-performance space suggests the commonly used FAPbI(3) annealing time, 10 min at 170 °C, can be significantly reduced to 40 s at 170 °C without affecting the photovoltaic performance. The Johnson-Mehl-Avrami model was used to determine the activation energy for decomposition of FAPbI(3) into PbI(2). Nature Publishing Group 2017-01-17 /pmc/articles/PMC5247577/ /pubmed/28094249 http://dx.doi.org/10.1038/ncomms14075 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Pool, Vanessa L.
Dou, Benjia
Van Campen, Douglas G.
Klein-Stockert, Talysa R.
Barnes, Frank S.
Shaheen, Sean E.
Ahmad, Md I.
van Hest, Maikel F. A. M.
Toney, Michael F.
Thermal engineering of FAPbI(3) perovskite material via radiative thermal annealing and in situ XRD
title Thermal engineering of FAPbI(3) perovskite material via radiative thermal annealing and in situ XRD
title_full Thermal engineering of FAPbI(3) perovskite material via radiative thermal annealing and in situ XRD
title_fullStr Thermal engineering of FAPbI(3) perovskite material via radiative thermal annealing and in situ XRD
title_full_unstemmed Thermal engineering of FAPbI(3) perovskite material via radiative thermal annealing and in situ XRD
title_short Thermal engineering of FAPbI(3) perovskite material via radiative thermal annealing and in situ XRD
title_sort thermal engineering of fapbi(3) perovskite material via radiative thermal annealing and in situ xrd
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247577/
https://www.ncbi.nlm.nih.gov/pubmed/28094249
http://dx.doi.org/10.1038/ncomms14075
work_keys_str_mv AT poolvanessal thermalengineeringoffapbi3perovskitematerialviaradiativethermalannealingandinsituxrd
AT doubenjia thermalengineeringoffapbi3perovskitematerialviaradiativethermalannealingandinsituxrd
AT vancampendouglasg thermalengineeringoffapbi3perovskitematerialviaradiativethermalannealingandinsituxrd
AT kleinstockerttalysar thermalengineeringoffapbi3perovskitematerialviaradiativethermalannealingandinsituxrd
AT barnesfranks thermalengineeringoffapbi3perovskitematerialviaradiativethermalannealingandinsituxrd
AT shaheenseane thermalengineeringoffapbi3perovskitematerialviaradiativethermalannealingandinsituxrd
AT ahmadmdi thermalengineeringoffapbi3perovskitematerialviaradiativethermalannealingandinsituxrd
AT vanhestmaikelfam thermalengineeringoffapbi3perovskitematerialviaradiativethermalannealingandinsituxrd
AT toneymichaelf thermalengineeringoffapbi3perovskitematerialviaradiativethermalannealingandinsituxrd