Cargando…
Thermal engineering of FAPbI(3) perovskite material via radiative thermal annealing and in situ XRD
Lead halide perovskites have emerged as successful optoelectronic materials with high photovoltaic power conversion efficiencies and low material cost. However, substantial challenges remain in the scalability, stability and fundamental understanding of the materials. Here we present the application...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247577/ https://www.ncbi.nlm.nih.gov/pubmed/28094249 http://dx.doi.org/10.1038/ncomms14075 |
_version_ | 1782497108985643008 |
---|---|
author | Pool, Vanessa L. Dou, Benjia Van Campen, Douglas G. Klein-Stockert, Talysa R. Barnes, Frank S. Shaheen, Sean E. Ahmad, Md I. van Hest, Maikel F. A. M. Toney, Michael F. |
author_facet | Pool, Vanessa L. Dou, Benjia Van Campen, Douglas G. Klein-Stockert, Talysa R. Barnes, Frank S. Shaheen, Sean E. Ahmad, Md I. van Hest, Maikel F. A. M. Toney, Michael F. |
author_sort | Pool, Vanessa L. |
collection | PubMed |
description | Lead halide perovskites have emerged as successful optoelectronic materials with high photovoltaic power conversion efficiencies and low material cost. However, substantial challenges remain in the scalability, stability and fundamental understanding of the materials. Here we present the application of radiative thermal annealing, an easily scalable processing method for synthesizing formamidinium lead iodide (FAPbI(3)) perovskite solar absorbers. Devices fabricated from films formed via radiative thermal annealing have equivalent efficiencies to those annealed using a conventional hotplate. By coupling results from in situ X-ray diffraction using a radiative thermal annealing system with device performances, we mapped the processing phase space of FAPbI(3) and corresponding device efficiencies. Our map of processing-structure-performance space suggests the commonly used FAPbI(3) annealing time, 10 min at 170 °C, can be significantly reduced to 40 s at 170 °C without affecting the photovoltaic performance. The Johnson-Mehl-Avrami model was used to determine the activation energy for decomposition of FAPbI(3) into PbI(2). |
format | Online Article Text |
id | pubmed-5247577 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-52475772017-02-08 Thermal engineering of FAPbI(3) perovskite material via radiative thermal annealing and in situ XRD Pool, Vanessa L. Dou, Benjia Van Campen, Douglas G. Klein-Stockert, Talysa R. Barnes, Frank S. Shaheen, Sean E. Ahmad, Md I. van Hest, Maikel F. A. M. Toney, Michael F. Nat Commun Article Lead halide perovskites have emerged as successful optoelectronic materials with high photovoltaic power conversion efficiencies and low material cost. However, substantial challenges remain in the scalability, stability and fundamental understanding of the materials. Here we present the application of radiative thermal annealing, an easily scalable processing method for synthesizing formamidinium lead iodide (FAPbI(3)) perovskite solar absorbers. Devices fabricated from films formed via radiative thermal annealing have equivalent efficiencies to those annealed using a conventional hotplate. By coupling results from in situ X-ray diffraction using a radiative thermal annealing system with device performances, we mapped the processing phase space of FAPbI(3) and corresponding device efficiencies. Our map of processing-structure-performance space suggests the commonly used FAPbI(3) annealing time, 10 min at 170 °C, can be significantly reduced to 40 s at 170 °C without affecting the photovoltaic performance. The Johnson-Mehl-Avrami model was used to determine the activation energy for decomposition of FAPbI(3) into PbI(2). Nature Publishing Group 2017-01-17 /pmc/articles/PMC5247577/ /pubmed/28094249 http://dx.doi.org/10.1038/ncomms14075 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Pool, Vanessa L. Dou, Benjia Van Campen, Douglas G. Klein-Stockert, Talysa R. Barnes, Frank S. Shaheen, Sean E. Ahmad, Md I. van Hest, Maikel F. A. M. Toney, Michael F. Thermal engineering of FAPbI(3) perovskite material via radiative thermal annealing and in situ XRD |
title | Thermal engineering of FAPbI(3) perovskite material via radiative thermal annealing and in situ XRD |
title_full | Thermal engineering of FAPbI(3) perovskite material via radiative thermal annealing and in situ XRD |
title_fullStr | Thermal engineering of FAPbI(3) perovskite material via radiative thermal annealing and in situ XRD |
title_full_unstemmed | Thermal engineering of FAPbI(3) perovskite material via radiative thermal annealing and in situ XRD |
title_short | Thermal engineering of FAPbI(3) perovskite material via radiative thermal annealing and in situ XRD |
title_sort | thermal engineering of fapbi(3) perovskite material via radiative thermal annealing and in situ xrd |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247577/ https://www.ncbi.nlm.nih.gov/pubmed/28094249 http://dx.doi.org/10.1038/ncomms14075 |
work_keys_str_mv | AT poolvanessal thermalengineeringoffapbi3perovskitematerialviaradiativethermalannealingandinsituxrd AT doubenjia thermalengineeringoffapbi3perovskitematerialviaradiativethermalannealingandinsituxrd AT vancampendouglasg thermalengineeringoffapbi3perovskitematerialviaradiativethermalannealingandinsituxrd AT kleinstockerttalysar thermalengineeringoffapbi3perovskitematerialviaradiativethermalannealingandinsituxrd AT barnesfranks thermalengineeringoffapbi3perovskitematerialviaradiativethermalannealingandinsituxrd AT shaheenseane thermalengineeringoffapbi3perovskitematerialviaradiativethermalannealingandinsituxrd AT ahmadmdi thermalengineeringoffapbi3perovskitematerialviaradiativethermalannealingandinsituxrd AT vanhestmaikelfam thermalengineeringoffapbi3perovskitematerialviaradiativethermalannealingandinsituxrd AT toneymichaelf thermalengineeringoffapbi3perovskitematerialviaradiativethermalannealingandinsituxrd |