Cargando…

Electrically tunable organic–inorganic hybrid polaritons with monolayer WS(2)

Exciton-polaritons are quasiparticles consisting of a linear superposition of photonic and excitonic states, offering potential for nonlinear optical devices. The excitonic component of the polariton provides a finite Coulomb scattering cross section, such that the different types of exciton found i...

Descripción completa

Detalles Bibliográficos
Autores principales: Flatten, Lucas C., Coles, David M., He, Zhengyu, Lidzey, David G., Taylor, Robert A., Warner, Jamie H., Smith, Jason M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247603/
https://www.ncbi.nlm.nih.gov/pubmed/28094281
http://dx.doi.org/10.1038/ncomms14097
_version_ 1782497112407146496
author Flatten, Lucas C.
Coles, David M.
He, Zhengyu
Lidzey, David G.
Taylor, Robert A.
Warner, Jamie H.
Smith, Jason M.
author_facet Flatten, Lucas C.
Coles, David M.
He, Zhengyu
Lidzey, David G.
Taylor, Robert A.
Warner, Jamie H.
Smith, Jason M.
author_sort Flatten, Lucas C.
collection PubMed
description Exciton-polaritons are quasiparticles consisting of a linear superposition of photonic and excitonic states, offering potential for nonlinear optical devices. The excitonic component of the polariton provides a finite Coulomb scattering cross section, such that the different types of exciton found in organic materials (Frenkel) and inorganic materials (Wannier-Mott) produce polaritons with different interparticle interaction strength. A hybrid polariton state with distinct excitons provides a potential technological route towards in situ control of nonlinear behaviour. Here we demonstrate a device in which hybrid polaritons are displayed at ambient temperatures, the excitonic component of which is part Frenkel and part Wannier-Mott, and in which the dominant exciton type can be switched with an applied voltage. The device consists of an open microcavity containing both organic dye and a monolayer of the transition metal dichalcogenide WS(2). Our findings offer a perspective for electrically controlled nonlinear polariton devices at room temperature.
format Online
Article
Text
id pubmed-5247603
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-52476032017-02-08 Electrically tunable organic–inorganic hybrid polaritons with monolayer WS(2) Flatten, Lucas C. Coles, David M. He, Zhengyu Lidzey, David G. Taylor, Robert A. Warner, Jamie H. Smith, Jason M. Nat Commun Article Exciton-polaritons are quasiparticles consisting of a linear superposition of photonic and excitonic states, offering potential for nonlinear optical devices. The excitonic component of the polariton provides a finite Coulomb scattering cross section, such that the different types of exciton found in organic materials (Frenkel) and inorganic materials (Wannier-Mott) produce polaritons with different interparticle interaction strength. A hybrid polariton state with distinct excitons provides a potential technological route towards in situ control of nonlinear behaviour. Here we demonstrate a device in which hybrid polaritons are displayed at ambient temperatures, the excitonic component of which is part Frenkel and part Wannier-Mott, and in which the dominant exciton type can be switched with an applied voltage. The device consists of an open microcavity containing both organic dye and a monolayer of the transition metal dichalcogenide WS(2). Our findings offer a perspective for electrically controlled nonlinear polariton devices at room temperature. Nature Publishing Group 2017-01-17 /pmc/articles/PMC5247603/ /pubmed/28094281 http://dx.doi.org/10.1038/ncomms14097 Text en Copyright © 2017, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Flatten, Lucas C.
Coles, David M.
He, Zhengyu
Lidzey, David G.
Taylor, Robert A.
Warner, Jamie H.
Smith, Jason M.
Electrically tunable organic–inorganic hybrid polaritons with monolayer WS(2)
title Electrically tunable organic–inorganic hybrid polaritons with monolayer WS(2)
title_full Electrically tunable organic–inorganic hybrid polaritons with monolayer WS(2)
title_fullStr Electrically tunable organic–inorganic hybrid polaritons with monolayer WS(2)
title_full_unstemmed Electrically tunable organic–inorganic hybrid polaritons with monolayer WS(2)
title_short Electrically tunable organic–inorganic hybrid polaritons with monolayer WS(2)
title_sort electrically tunable organic–inorganic hybrid polaritons with monolayer ws(2)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247603/
https://www.ncbi.nlm.nih.gov/pubmed/28094281
http://dx.doi.org/10.1038/ncomms14097
work_keys_str_mv AT flattenlucasc electricallytunableorganicinorganichybridpolaritonswithmonolayerws2
AT colesdavidm electricallytunableorganicinorganichybridpolaritonswithmonolayerws2
AT hezhengyu electricallytunableorganicinorganichybridpolaritonswithmonolayerws2
AT lidzeydavidg electricallytunableorganicinorganichybridpolaritonswithmonolayerws2
AT taylorroberta electricallytunableorganicinorganichybridpolaritonswithmonolayerws2
AT warnerjamieh electricallytunableorganicinorganichybridpolaritonswithmonolayerws2
AT smithjasonm electricallytunableorganicinorganichybridpolaritonswithmonolayerws2