Cargando…

Complete-genome sequencing elucidates outbreak dynamics of CA-MRSA USA300 (ST8-spa t008) in an academic hospital of Paramaribo, Republic of Suriname

We report the investigation of an outbreak situation of methicillin-resistant Staphylococcus aureus (MRSA) that occurred at the Academic Hospital Paramaribo (AZP) in the Republic of Suriname from April to May 2013. We performed whole genome sequencing with complete gap closure for chromosomes and pl...

Descripción completa

Detalles Bibliográficos
Autores principales: Sabat, Artur J., Hermelijn, Sandra M., Akkerboom, Viktoria, Juliana, Amadu, Degener, John E., Grundmann, Hajo, Friedrich, Alexander W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247709/
https://www.ncbi.nlm.nih.gov/pubmed/28106148
http://dx.doi.org/10.1038/srep41050
Descripción
Sumario:We report the investigation of an outbreak situation of methicillin-resistant Staphylococcus aureus (MRSA) that occurred at the Academic Hospital Paramaribo (AZP) in the Republic of Suriname from April to May 2013. We performed whole genome sequencing with complete gap closure for chromosomes and plasmids on all isolates. The outbreak involved 12 patients and 1 healthcare worker/nurse at the AZP. In total 24 isolates were investigated. spa typing, genome-wide single nucleotide polymorphism (SNP) analysis, ad hoc whole genome multilocus sequence typing (wgMLST), stable core genome MLST (cgMLST) and in silico PFGE were used to determine phylogenetic relatedness and to identify transmission. Whole-genome sequencing (WGS) showed that all isolates were members of genomic variants of the North American USA300 clone. However, WGS revealed a heterogeneous population structure of USA300 circulating at the AZP. We observed up to 8 SNPs or up to 5 alleles of difference by wgMLST when the isolates were recovered from different body sites of the same patient or if direct transmission between patients was most likely. This work describes the usefulness of complete genome sequencing of bacterial chromosomes and plasmids providing an unprecedented level of detail during outbreak investigations not being visible by using conventional typing methods.