Cargando…

Catalyst shape engineering for anisotropic cross-sectioned nanowire growth

The ability to engineer material properties at the nanoscale is a crucial prerequisite for nanotechnology. Hereunder, we suggest and demonstrate a novel approach to realize non-hemispherically shaped nanowire catalysts, subsequently used to grow InP nanowires with a cross section anisotropy ratio of...

Descripción completa

Detalles Bibliográficos
Autores principales: Calahorra, Yonatan, Kelrich, Alexander, Cohen, Shimon, Ritter, Dan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5247733/
https://www.ncbi.nlm.nih.gov/pubmed/28106088
http://dx.doi.org/10.1038/srep40891
Descripción
Sumario:The ability to engineer material properties at the nanoscale is a crucial prerequisite for nanotechnology. Hereunder, we suggest and demonstrate a novel approach to realize non-hemispherically shaped nanowire catalysts, subsequently used to grow InP nanowires with a cross section anisotropy ratio of up to 1:1.8. Gold was deposited inside high aspect ratio nanotrenches in a 5 nm thick SiN(x) selective area mask; inside the growth chamber, upon heating to 455 °C, the thin gold stripes agglomerated, resulting in an ellipsoidal dome (hemiellipsoid). The initial shape of the catalyst was preserved during growth to realize asymmetrically cross-sectioned nanowires. Moreover, the crystalline nature of the nanowire side facets was found to depend on the nano-trench orientation atop the substrate, resulting in hexagonal or octagonal cross-sections when the nano-trenches are aligned or misaligned with the [1̄10] orientation atop a [111]B substrate. These results establish the role of catalyst shape as a unique tool to engineer nanowire growth, potentially allowing further control over its physical properties.